Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Epilepsia Open ; 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38970780

RESUMEN

OBJECTIVE: This study evaluates the performance of the novel MRI sequence stimulus-induced rotary saturation (SIRS) to map responses to interictal epileptic activity in the human cortex. Spin-lock pulses have been applied to indirectly detect neuronal activity through magnetic field perturbations. Following initial reports about the feasibility of the method in humans and animals with epilepsy, we aimed to investigate the diagnostic yield of spin-lock MR pulses in comparison with scalp-EEG in first seizure patients. METHODS: We employed a novel method for measurements of neuronal activity through the detection of a resonant oscillating field, stimulus-induced rotary saturation contrast (SIRS) at spin-lock frequencies of 120 and 240 Hz acquired at a single 3T MRI system. Within a prospective observational study, we conducted SIRS experiments in 55 patients within 7 days after a suspected first unprovoked epileptic seizure and 61 healthy control subjects. In this study, we report on the analysis of data from a single 3T MRI system, encompassing 35 first seizure patients and 31 controls. RESULTS: The SIRS method was applicable in all patients and healthy controls at frequencies of 120 and 240 Hz. We did not observe any significant age- or sex-related differences. Specificity of SIRS at 120 Hz was 90.3% and 93.5% at 240 Hz. Sensitivity was 17.1% at 120 Hz and 40.0% at 240 Hz. SIGNIFICANCE: SIRS targets neuronal oscillating magnetic fields in patients with epilepsy. The coupling of presaturated spins to epilepsy-related magnetic field perturbations may serve as a-at this stage experimental-diagnostic test in first seizure patients to complement EEG findings as a standard screening test. PLAIN LANGUAGE SUMMARY: Routine diagnostic tests carry several limitations when applied after a suspected first seizure. SIRS is a noninvasive MRI method to enable time-sensitive diagnosis of image correlates of epileptic activity with increased sensitivity compared to routine EEG.

2.
Clin Neuroradiol ; 33(4): 1045-1053, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37358608

RESUMEN

OBJECTIVE: To evaluate the influence of quantitative reports (QReports) on the radiological assessment of hippocampal sclerosis (HS) from MRI of patients with epilepsy in a setting mimicking clinical reality. METHODS: The study included 40 patients with epilepsy, among them 20 with structural abnormalities in the mesial temporal lobe (13 with HS). Six raters blinded to the diagnosis assessed the 3T MRI in two rounds, first using MRI only and later with both MRI and the QReport. Results were evaluated using inter-rater agreement (Fleiss' kappa [Formula: see text]) and comparison with a consensus of two radiological experts derived from clinical and imaging data, including 7T MRI. RESULTS: For the primary outcome, diagnosis of HS, the mean accuracy of the raters improved from 77.5% with MRI only to 86.3% with the additional QReport (effect size [Formula: see text]). Inter-rater agreement increased from [Formula: see text] to [Formula: see text]. Five of the six raters reached higher accuracies, and all reported higher confidence when using the QReports. CONCLUSION: In this pre-use clinical evaluation study, we demonstrated clinical feasibility and usefulness as well as the potential impact of a previously suggested imaging biomarker for radiological assessment of HS.


Asunto(s)
Epilepsia del Lóbulo Temporal , Epilepsia , Esclerosis del Hipocampo , Humanos , Epilepsia del Lóbulo Temporal/diagnóstico por imagen , Epilepsia del Lóbulo Temporal/patología , Hipocampo/diagnóstico por imagen , Hipocampo/patología , Esclerosis/diagnóstico por imagen , Esclerosis/patología , Epilepsia/patología , Imagen por Resonancia Magnética/métodos , Biomarcadores
3.
Brain Commun ; 5(2): fcad047, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36926367

RESUMEN

Epileptic seizures require a rapid and safe diagnosis to minimize the time from onset to adequate treatment. Some epileptic seizures can be diagnosed clinically with the respective expertise. For more subtle seizures, imaging is mandatory to rule out treatable structural lesions and potentially life-threatening conditions. MRI perfusion abnormalities associated with epileptic seizures have been reported in CT and MRI studies. However, the interpretation of transient peri-ictal MRI abnormalities is routinely based on qualitative visual analysis and therefore reader dependent. In this retrospective study, we investigated the diagnostic yield of visual analysis of perfusion MRI during ictal and postictal states based on comparative expert ratings in 51 patients. We further propose an automated semi-quantitative method for perfusion analysis to determine perfusion abnormalities observed during ictal and postictal MRI using dynamic susceptibility contrast MRI, which we validated on a subcohort of 27 patients. The semi-quantitative method provides a parcellation of 3D T1-weighted images into 32 standardized cortical regions of interests and subcortical grey matter structures based on a recently proposed method, direct cortical thickness estimation using deep learning-based anatomy segmentation and cortex parcellation for brain anatomy segmentation. Standard perfusion maps from a Food and Drug Administration-approved image analysis tool (Olea Sphere 3.0) were co-registered and investigated for region-wise differences between ictal and postictal states. These results were compared against the visual analysis of two readers experienced in functional image analysis in epilepsy. In the ictal group, cortical hyperperfusion was present in 17/18 patients (94% sensitivity), whereas in the postictal cohort, cortical hypoperfusion was present only in 9/33 (27%) patients while 24/33 (73%) showed normal perfusion. The (semi-)quantitative dynamic susceptibility contrast MRI perfusion analysis indicated increased thalamic perfusion in the ictal cohort and hypoperfusion in the postictal cohort. Visual ratings between expert readers performed well on the patient level, but visual rating agreement was low for analysis of subregions of the brain. The asymmetry of the automated image analysis correlated significantly with the visual consensus ratings of both readers. We conclude that expert analysis of dynamic susceptibility contrast MRI effectively discriminates ictal versus postictal perfusion patterns. Automated perfusion evaluation revealed favourable interpretability and correlated well with the classification of the visual ratings. It may therefore be employed for high-throughput, large-scale perfusion analysis in extended cohorts, especially for research questions with limited expert rater capacity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...