Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.708
Filtrar
1.
Chin J Integr Med ; 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39167283

RESUMEN

OBJECTIVE: To investigate potential mechanisms of anti-atherosclerosis by berberine (BBR) using ApoE-/- mice. METHODS: Eight 8-week-old C57BL/6J mice were used as a blank control group (normal), and 56 8-week-old AopE-/- mice were fed a high-fat diet for 12 weeks, according to a completely random method, and were divided into the model group, BBR low-dose group (50 mg/kg, BBRL), BBR medium-dose group (100 mg/kg, BBRM), BBR high-dose group (150 mg/kg, BBRH), BBR+nuclear factor erythroid 2-related factor 2 (NRF2) inhibitor group (100 mg/kg BBR+30 mg/kg ML385, BBRM+ML385), NRF2 inhibitor group (30 mg/kg, ML385), and positive control group (2.5 mg/kg, atorvastatin), 8 in each group. After 4 weeks of intragastric administration, samples were collected and serum, aorta, heart and liver tissues were isolated. Biochemical kits were used to detect serum lipid content and the expression levels of malondialdehyde (MDA) and superoxide dismutase (SOD) in all experimental groups. The pathological changes of atherosclerosis (AS) were observed by aorta gross Oil Red O, aortic sinus hematoxylin-eosin (HE) and Masson staining. Liver lipopathy was observed in mice by HE staining. The morphology of mitochondria in aorta cells was observed under transmission electron microscope. Flow cytometry was used to detect reactive oxygen species (ROS) expression in aorta of mice in each group. The content of ferrous ion Fe2+ in serum of mice was detected by biochemical kit. The mRNA and protein relative expression levels of NRF2, glutathione peroxidase 4 (GPX4) and recombinant solute carrier family 7 member 11 (SLC7A11) were detected by quantitative real time polymerase chain reaction (RT-qPCR) and Western blot, respectively. RESULTS: BBRM and BBRH groups delayed the progression of AS and reduced the plaque area (P<0.01). The characteristic morphological changes of ferroptosis were rarely observed in BBR-treated AS mice, and the content of Fe2+ in BBR group was significantly lower than that in the model group (P<0.01). BBR decreased ROS and MDA levels in mouse aorta, increased SOD activity (P<0.01), significantly up-regulated NRF2/SLC7A11/GPX4 protein and mRNA expression levels (P<0.01), and inhibited lipid peroxidation. Compared with the model group, the body weight, blood lipid level and aortic plaque area of ML385 group increased (P<0.01); the morphology of mitochondria showed significant ferroptosis characteristics; the serum Fe2+, MDA and ROS levels increased (P<0.05 or P<0.01), and the activity of SOD decreased (P<0.01). Compared with BBRM group, the iron inhibition effect of BBRM+ML385 group was significantly weakened, and the plaque area significantly increased (P<0.01). CONCLUSION: Through NRF2/SLC7A11/GPX4 pathway, BBR can resist oxidative stress, inhibit ferroptosis, reduce plaque area, stabilize plaque, and exert anti-AS effects.

2.
Eur J Med Chem ; 277: 116761, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39151276

RESUMEN

The P-glycoprotein (ABCB1)-mediated multidrug resistance (MDR) has emerged as a significant impediment to the efficacy of cancer chemotherapy in clinical therapy, which could promote the development of effective agents for MDR reversal. In this work, we reported the exploration of novel pyrazolo [1,5-a]pyrimidine derivatives as potent reversal agents capable of enhancing the sensitivity of ABCB1-mediated MDR MCF-7/ADR cells to paclitaxel (PTX). Among them, compound 16q remarkably increased the sensitivity of MCF-7/ADR cells to PTX at 5 µM (IC50 = 27.00 nM, RF = 247.40) and 10 µM (IC50 = 10.07 nM, RF = 663.44). Compound 16q could effectively bind and stabilize ABCB1, and does not affect the expression and subcellular localization of ABCB1 in MCF-7/ADR cells. Compound 16q inhibited the function of ABCB1, thereby increasing PTX accumulation, and interrupting the accumulation and efflux of the ABCB1-mediated Rh123, thus resulting in exhibiting good reversal effects. In addition, due to the potent reversal effects of compound 16q, the abilities of PTX to inhibit tubulin depolymerization, and induce cell cycle arrest and apoptosis in MCF-7/ADR cells under low-dose conditions were restored. These results indicate that compound 16q might be a promising potent reversal agent capable of revising ABCB1-mediated MDR, and pyrazolo [1,5-a]pyrimidine might represent a novel scaffold for the discovery of new ABCB1-mediated MDR reversal agents.

3.
Int J Nanomedicine ; 19: 7799-7816, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39099794

RESUMEN

Background: At present, the few photothermal/chemotherapy studies about retinoblastoma that have been reported are mainly restricted to ectopic models involving subcutaneous implantation. However, eyeball is unique physiological structure, the blood-retina barrier (BRB) hinders the absorption of drug molecules through the systemic route. Moreover, the abundant blood circulation in the fundus accelerates drug metabolism. To uphold the required drug concentration, patients must undergo frequent chemotherapy sessions. Purpose: To address these challenges above, we need to develop a secure and effective drug delivery system (FA-PEG-PDA-DOX) for the fundus. Methods: We offered superior therapeutic efficacy with minimal or no side effects and successfully established orthotopic mouse models. We evaluated cellular uptake performance and targeting efficiency of FA-PEG-PDA-DOX nanosystem and assessed its synergistic antitumor effects in vitro and vivo. Biodistribution assessments were performed to determine the retention time and targeting efficiency of the NPs in vivo. Additionally, safety assessments were conducted. Results: Cell endocytosis rates of the FA-PEG-PDA-DOX+Laser group became 5.23 times that of the DOX group and 2.28 times that of FA-PEG-PDA-DOX group without irradiation. The fluorescence signal of FA-PEG-PDA-DOX persisted for more than 120 hours at the tumor site. The number of tumor cells (17.2%) in the proliferative cycle decreased by 61.6% in the photothermal-chemotherapy group, in contrast to that of the saline control group (78.8%). FA-PEG-PDA-DOX nanoparticles(NPs) exhibited favorable biosafety and high biocompatibility. Conclusion: The dual functional targeted nanosystem, with the effects of DOX and mild-temperature elevation by irradiation, resulted in precise chemo/photothermal therapy in nude mice model.


Asunto(s)
Doxorrubicina , Indoles , Terapia Fototérmica , Polímeros , Retinoblastoma , Animales , Retinoblastoma/terapia , Doxorrubicina/química , Doxorrubicina/farmacocinética , Doxorrubicina/farmacología , Doxorrubicina/administración & dosificación , Ratones , Terapia Fototérmica/métodos , Humanos , Indoles/química , Indoles/farmacocinética , Indoles/farmacología , Línea Celular Tumoral , Polímeros/química , Distribución Tisular , Polietilenglicoles/química , Polietilenglicoles/farmacocinética , Ratones Desnudos , Nanopartículas/química , Sistemas de Liberación de Medicamentos/métodos , Neoplasias de la Retina/terapia , Neoplasias de la Retina/tratamiento farmacológico , Ratones Endogámicos BALB C , Antibióticos Antineoplásicos/farmacología , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/farmacocinética , Antibióticos Antineoplásicos/administración & dosificación , Modelos Animales de Enfermedad , Ensayos Antitumor por Modelo de Xenoinjerto , Sistema de Administración de Fármacos con Nanopartículas/química , Sistema de Administración de Fármacos con Nanopartículas/farmacocinética
4.
Chem Sci ; 15(30): 11928-11936, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39092100

RESUMEN

The introduction of heterogeneous components within one single coordination network leads to the multifunctionality of the final material. However, it is hard to precisely control the local distribution of these different components in such a coordination network, especially for different components with identical topological connectivity. In this study, we successfully achieved the ordered assembly of [Mn3(µ3-O)] nodes and [Mn6(µ3-O)2(CH3COO)3] nodes within one pacs coordination network. The resulting new structure (NPU-6) with heterogeneous metal nodes simultaneously inherits the advantages of both parent networks (good thermal stability and high pore volume). The significant effect of the reaction concentration of competing ligand CH3COO- on the mixed assembly of these two nodes in NPU-6 is revealed by a series of control experiments. This method is anticipated to offer a valuable reference for orderly assembling heterogeneous components in coordination networks.

5.
Clin Transl Med ; 14(8): e1744, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39166890

RESUMEN

BACKGROUND: Severe bacterial infections can trigger acute lung injury (ALI) and acute respiratory distress syndrome, with bacterial pathogen-associated molecular patterns (PAMPs) exacerbating the inflammatory response, particularly in COVID-19 patients. Cyclic-di-GMP (CDG), one of the PAMPs, is synthesized by various Gram-positve and Gram-negative bacteria. Previous studies mainly focused on the inflammatory responses triggered by intracellular bacteria-released CDG. However, how extracellular CDG, which is released by bacterial autolysis or rupture, activates the inflammatory response remains unclear. METHODS: The interaction between extracellular CDG and myeloid differentiation protein 2 (MD2) was investigated using in vivo and in vitro models. MD2 blockade was achieved using specific inhibitor and genetic knockout mice. Site-directed mutagenesis, co-immunoprecipitation, SPR and Bis-ANS displacement assays were used to identify the potential binding sites of MD2 on CDG. RESULTS: Our data show that extracellular CDG directly interacts with MD2, leading to activation of the TLR4 signalling pathway and lung injury. Specific inhibitors or genetic knockout of MD2 in mice significantly alleviated CDG-induced lung injury. Moreover, isoleucine residues at positions 80 and 94, along with phenylalanine at position 121, are essential for the binding of MD2 to CDG. CONCLUSION: These results reveal that extracellular CDG induces lung injury through direct interaction with MD2 and activation of the TLR4 signalling pathway, providing valuable insights into bacteria-induced ALI mechanisms and new therapeutic approaches for the treatment of bacterial co-infection in COVID-19 patients.


Asunto(s)
Lesión Pulmonar Aguda , COVID-19 , GMP Cíclico , Antígeno 96 de los Linfocitos , Lesión Pulmonar Aguda/metabolismo , Antígeno 96 de los Linfocitos/metabolismo , Animales , Ratones , GMP Cíclico/metabolismo , GMP Cíclico/análogos & derivados , Humanos , COVID-19/metabolismo , COVID-19/complicaciones , Ratones Noqueados , Inflamación/metabolismo , SARS-CoV-2 , Receptor Toll-Like 4/metabolismo , Ratones Endogámicos C57BL , Transducción de Señal , Masculino
6.
J Hand Surg Eur Vol ; : 17531934241274112, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39169725

RESUMEN

We summarize the attention that has been drawn to and the thought process about the complexity of current classification zones of extensor tendons. A possible new, simpler classification was proposed by the lead author and discussed with the co-author. A simplified classification is presented with rationale, mainly based on the simplified treatment strategies used by the authors. We also discuss the possible drawbacks and call for investigations on this topic to make the current treatment strategies less complex. An updated system should be based on improved understandings of clinical treatment, including an increasing trend of using conservative treatment for closed injuries and strong surgical repair methods for open injuries of extensor tendons.

7.
Sci Rep ; 14(1): 18295, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39112558

RESUMEN

Artificial rabbits optimization (ARO) is a metaheuristic algorithm based on the survival strategy of rabbits proposed in 2022. ARO has favorable optimization performance, but it still has some shortcomings, such as weak exploitation capacity, easy to fall into local optima, and serious decline of population diversity at the later stage. In order to solve these problems, we propose an improved multi-strategy artificial rabbits optimization, called IMARO, based on ARO algorithm. In this paper, a roulette fitness distance balanced hiding strategy is proposed so that rabbits can find better locations to hide more reasonably. Meanwhile, in order to improve the deficiency of ARO which is easy to fall into local optimum, an improved non-monopoly search strategy based on Gaussian and Cauchy operators is designed to improve the ability of the algorithm to obtain the global optimal solution. Finally, a covariance restart strategy is designed to improve population diversity when the exploitation is stagnant and to improve the convergence accuracy and convergence speed of ARO. The performance of IMARO is verified by comparing original ARO algorithm with six basic algorithms and seven improved algorithms. The results of CEC2014, CEC2017, CEC2022 show that IMARO has a good exploitation and exploration ability and can effectively get rid of local optimum. Moreover, IMARO produces optimal results on six real-world engineering problems, further demonstrating its efficiency in solving real-world optimization challenges.

8.
Front Immunol ; 15: 1343109, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39144147

RESUMEN

Introduction: Primary central nervous system lymphoma (PCNSL) is a rare type of non-Hodgkin's lymphoma that affects brain parenchyma, eyes, cerebrospinal fluid, and spinal cord. Diagnosing PCNSL can be challenging because imaging studies often show similar patterns as other brain tumors, and stereotactic brain lesion biopsy conformation is invasive and not always possible. This study aimed to validate a previous proteomic profiling (PMID: 32610669) of cerebrospinal fluid (CSF) and develop a CSF-based proteomic panel for accurate PCNSL diagnosis and differentiation. Methods: CSF samples were collected from patients of 30 PCNSL, 30 other brain tumors, and 31 tumor-free/benign controls. Liquid chromatography tandem-mass spectrometry targeted proteomics analysis was used to establish CSF-based proteomic panels. Results: Final proteomic panels were selected and optimized to diagnose PCNSL from tumor-free controls or other brain tumor lesions with an area under the curve (AUC) of 0.873 (95%CI: 0.723-0.948) and 0.937 (95%CI: 0.807- 0.985), respectively. Pathways analysis showed diagnosis panel features were significantly enriched in pathways related to extracellular matrices-receptor interaction, focal adhesion, and PI3K-Akt signaling, while prion disease, mineral absorption and HIF-1 signaling were significantly enriched with differentiation panel features. Discussion: This study suggests an accurate clinical test panel for PCNSL diagnosis and differentiation with CSF-based proteomic signatures, which may help overcome the challenges of current diagnostic methods and improve patient outcomes.


Asunto(s)
Biomarcadores de Tumor , Neoplasias Encefálicas , Proteómica , Humanos , Proteómica/métodos , Biomarcadores de Tumor/líquido cefalorraquídeo , Neoplasias Encefálicas/líquido cefalorraquídeo , Neoplasias Encefálicas/diagnóstico , Femenino , Masculino , Persona de Mediana Edad , Anciano , Diagnóstico Diferencial , Adulto , Linfoma no Hodgkin/líquido cefalorraquídeo , Linfoma no Hodgkin/diagnóstico
9.
J Plast Reconstr Aesthet Surg ; 96: 161-167, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39089213

RESUMEN

BACKGROUND: This prospective study aimed to evaluate the outcomes of the use of dermal templates for lengthy volar soft tissue defects (1.5-4 cm) in the fingers. METHODS: The volar soft tissue defects of 15 patients (19 fingers) were treated with Lando dermal template coverage between June 2022 and November 2022. We evaluated sensory recovery, scar formation, and overall appearance of the repair site at an average of 13 months (range, 12-17 months) of follow-up. RESULTS: The defect healed in all cases. We found an average static 2-point discrimination of 7 mm (range 4 to 14 mm). Scar formation was evident in all cases. The repair did not restore the bulkiness of the volar finger, especially in the finger with the bony exposure. Nail deformities and joint contracture were observed in some cases. CONCLUSION: Dermal template repair does not restore normal sensation and inevitably leads to scar formation when the defect is longer (>1.5 cm). Bulkiness of the volar finger is not restored in most patients, especially when there was bone or tendon exposure in the initial wound site.


Asunto(s)
Cicatriz , Traumatismos de los Dedos , Humanos , Masculino , Femenino , Adulto , Traumatismos de los Dedos/cirugía , Estudios Prospectivos , Persona de Mediana Edad , Traumatismos de los Tejidos Blandos/cirugía , Piel Artificial , Adolescente , Adulto Joven , Dedos/cirugía , Trasplante de Piel/métodos
10.
Langmuir ; 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39021329

RESUMEN

This research delves into the preparation of heteronuclear bimetallic catalysts and explores their catalytic properties in the thermal decomposition of ammonium perchlorate (AP). The study's central focus is on enhancing the thermal decomposition characteristics of AP and, consequently, the combustion performance of composite solid propellants. The synthesized materials underwent structural characterization by XRD, XPS, SEM, and FTIR. Catalytic properties were examined using DTA tests. Notably, catalysts derived from calcination at 500 °C exhibited heightened catalytic activity. They advanced the pyrolysis temperature by 135.4 °C and reduced the activation energy by 82.38 kJ/mol compared with pure AP. To further elucidate the decomposition mechanism of AP, the investigation also employed a combined approach involving DSC-TG-FTIR-MS analysis.

11.
J Cell Mol Med ; 28(14): e18521, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39021279

RESUMEN

In the present study, the debatable prognostic value of Ki67 in patients with non-small cell lung cancer (NSCLC) was attributed to the heterogeneity between lung adenocarcinoma (LUAD) and lung squamous carcinoma (LUSC). Based on meta-analyses of 29 studies, a retrospective immunohistochemical cohort of 1479 patients from our center, eight transcriptional datasets and a single-cell datasets with 40 patients, we found that high Ki67 expression suggests a poor outcome in LUAD, but conversely, low Ki67 expression indicates worse prognosis in LUSC. Furthermore, low proliferation in LUSC is associated with higher metastatic capacity, which is related to the stronger epithelial-mesenchymal transition potential, immunosuppressive microenvironment and angiogenesis. Finally, nomogram model incorporating clinical risk factors and Ki67 expression outperformed the basic clinical model for the accurate prognostic prediction of LUSC. With the largest prognostic assessment of Ki67 from protein to mRNA level, our study highlights that Ki67 also has an important prognostic value in NSCLC, but separate evaluation of LUAD and LUSC is necessary to provide more valuable information for clinical decision-making in NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Inmunohistoquímica , Antígeno Ki-67 , Neoplasias Pulmonares , Humanos , Antígeno Ki-67/metabolismo , Antígeno Ki-67/genética , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Pronóstico , Femenino , Masculino , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Regulación Neoplásica de la Expresión Génica , Persona de Mediana Edad , Anciano , Nomogramas , Microambiente Tumoral/genética , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología , Transición Epitelial-Mesenquimal/genética , Estudios Retrospectivos
12.
Eur J Med Chem ; 276: 116678, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-39029337

RESUMEN

Focal adhesion kinase (FAK) is considered as a pivotal intracellular non-receptor tyrosine kinase, and has garnered significant attention as a promising target for anticancer drug development. As of early 2024, a total of 12 drugs targeting FAK have been approved for clinical or preclinical studies worldwide, including three PROTAC degraders. In recent three years (2021-2023), significant progress has been made in designing targeted FAK anticancer agents, including the development of a novel benzenesulfofurazan type NO-releasing FAK inhibitor and the first-in-class dual-target inhibitors simultaneously targeting FAK and HDACs. Given the pivotal role of FAK in the discovery of anticancer drugs, as well as the notable advancements achieved in FAK inhibitors and PROTAC degraders in recent years, this review is underbaked to present a comprehensive overview of the function and structure of FAK. Additionally, the latest findings on the inhibitors and PROTAC degraders of FAK from the past three years, along with their optimization strategies and anticancer activities, were summarized, which might help to provide novel insights for the development of novel targeted FAK agents with promising anticancer potential and favorable pharmacological profiles.


Asunto(s)
Antineoplásicos , Proteína-Tirosina Quinasas de Adhesión Focal , Neoplasias , Inhibidores de Proteínas Quinasas , Humanos , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/síntesis química , Proteína-Tirosina Quinasas de Adhesión Focal/antagonistas & inhibidores , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Neoplasias/tratamiento farmacológico , Animales , Estructura Molecular
13.
Zool Res ; 45(4): 910-923, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39021080

RESUMEN

Litopenaeus vannamei is the most extensively cultured shrimp species globally, recognized for its scale, production, and economic value. However, its aquaculture is plagued by frequent disease outbreaks, resulting in rapid and massive mortality. etiological research often lags behind the emergence of new diseases, leaving the causal agents of some shrimp diseases unidentified and leading to nomenclature based on symptomatic presentations, especially in cases involving co- and polymicrobial pathogens. Comprehensive data on shrimp disease statuses remain limited. In this review, we summarize current knowledge on shrimp diseases and their effects on the gut microbiome. Furthermore, we also propose a workflow integrating primary colonizers, "driver" taxa in gut networks from healthy to diseased states, disease-discriminatory taxa, and virulence genes to identify potential polymicrobial pathogens. We examine both abiotic and biotic factors (e.g., external and internal sources and specific-disease effects) that influence shrimp gut microbiota, with an emphasis on the "holobiome" concept and common features of gut microbiota response to diverse diseases. After excluding the effects of confounding factors, we provide a diagnosis model for quantitatively predicting shrimp disease incidence using disease common-discriminatory taxa, irrespective of the causal agents. Due to the conservation of functional genes used in designing specific primers, we propose a practical strategy applying qPCR-assayed abundances of disease common-discriminatory functional genes. This review updates the roles of the gut microbiota in exploring shrimp etiology, polymicrobial pathogens, and disease incidence, offering a refined perspective for advancing shrimp aquaculture health management.


Asunto(s)
Microbioma Gastrointestinal , Penaeidae , Animales , Penaeidae/microbiología , Acuicultura , Incidencia
14.
Eur J Med Chem ; 276: 116694, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-39047607

RESUMEN

As a highly conserved signaling network across different species, the Hippo pathway is involved in various biological processes. Dysregulation of the Hippo pathway could lead to a wide range of diseases, particularly cancers. Extensive researches have demonstrated the close association between dysregulated Hippo signaling and tumorigenesis as well as tumor progression. Consequently, targeting the Hippo pathway has emerged as a promising strategy for cancer treatment. In fact, there has been an increasing number of reports on small molecules that target the Hippo pathway, exhibiting therapeutic potential as anticancer agents. Importantly, some of Hippo signaling pathway inhibitors have been approved for the clinical trials. In this work, we try to provide an overview of the core components and signal transduction mechanisms of the Hippo signaling pathway. Furthermore, we also analyze the relationship between Hippo signaling pathway and cancers, as well as summarize the small molecules with proven anti-tumor effects in clinical trials or reported in literatures. Additionally, we discuss the anti-tumor potency and structure-activity relationship of the small molecule compounds, providing a valuable insight for further development of anticancer agents against this pathway.


Asunto(s)
Antineoplásicos , Vía de Señalización Hippo , Neoplasias , Proteínas Serina-Treonina Quinasas , Transducción de Señal , Humanos , Antineoplásicos/farmacología , Antineoplásicos/química , Transducción de Señal/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/patología , Relación Estructura-Actividad , Animales , Estructura Molecular , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología
15.
J Ethnopharmacol ; 334: 118568, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38996949

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Hyssopus cuspidatus Boriss., a classic Uyghur medicine, is used to treat inflammatory lung diseases such as asthma. But the therapeutic effect and mechanism of the volatile oil of Hyssopus cuspidatus Boriss.(HVO) in asthma therapy remain unclear. AIM OF THE STUDY: We aim to characterize the constituents of HVO, investigate the therapeutic effect in OVA-induced allergic asthmatic mice and further explore the molecular mechanism. MATERIALS AND METHODS: In this study, we applied two-dimensional gas chromatography quadrupole time-of-flight mass spectrometry (GC × GC-QTOF MS) to identify the ingredients of HVO. We established OVA-induced asthmatic model to investigate the therapeutic effect of HVO. To further explore the potential molecular pathways, we used network pharmacology approach to perform GO and KEGG pathways enrichment, and then built an ingredient-target-pathway network to identify key molecular pathways. Finally, LPS-induced RAW 264.7 macrophages and OVA-induced asthmatic model were used to validate the potential signaling pathways. RESULTS: GC × GC-QTOF MS analysis revealed the presence of 123 compounds of HVO. The sesquiterpenes and monoterpenes are the main constituents. The in vivo study indicated that HVO suppressed OVA-induced eosinophilic infiltration in lung tissues, inhibited the elevation of IgE, IL-4, IL-5, and IL-13 levels, downregulated the expressions of phosphorylated PI3K, Akt, JNK and P38, and maintained epithelial barrier integrity via reducing the degradation of occludin, Zo-1, Zo-2, and E-cadherin. The in vitro study also revealed an inhibition of NO release and downregulation of phosphorylated PI3K, Akt, JNK and P38 levels. CONCLUSION: HVO alleviates airway inflammation in OVA-induced asthmatic mice by inhibiting PI3K/Akt/JNK/P38 signaling pathway and maintaining airway barrier integrity via reducing the degradation of occludin, Zo-1, Zo-2, and E-cadherin.


Asunto(s)
Asma , Aceites Volátiles , Ovalbúmina , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Animales , Femenino , Ratones , Antiasmáticos/farmacología , Asma/tratamiento farmacológico , Asma/inducido químicamente , Modelos Animales de Enfermedad , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones Endogámicos BALB C , Aceites Volátiles/farmacología , Aceites Volátiles/química , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Pyroglyphidae/inmunología , Células RAW 264.7 , Transducción de Señal/efectos de los fármacos
16.
Environ Pollut ; 360: 124583, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39038776

RESUMEN

Bile acids (BAs) play a crucial role in lipid metabolism of children. However, the association between per- and polyfluoroalkyl substance (PFAS) exposure and BAs in children is scarce. To address this need, we selected 252 children from the Maoming Birth Cohort and measured 32 PFAS, encompassing short- and long-chain perfluorocarboxylic acids (PFCAs) and perfluorosulfonic acids (PFSAs) in the cord blood. Additionally, we analyzed nine primary and eight secondary BAs in the serum of three-year-old children. Generalized linear models with FDR-adjusted and Bayesian kernel machine regression (BKMR) were used to explore the associations of individual and mixture effects of PFAS and BAs. We found negative associations between cord blood long-chain PFCAs exposure and serum primary BAs in three-year-old children. For example, one ln-unit (ng/mL) increase of perfluoro-n-tridecanoic acid (PFTrDA), perfluoro-n-undecanoic acid (PFUnDA) and perfluoro-n-decanoic acid (PFDA) were associated with decreased taurochenodeoxycholic acid, with estimated percentage change of -24.28% [95% confidence interval (CI): -36.75%, -9.35%], -25.84% (95% CI: -39.67%, -8.83%), and -22.97% (95% CI: -34.45%, -9.47%) respectively. Notably, the observed associations were more pronounced in children with lower vegetable intake. Additionally, the BKMR model also demonstrated a monotonical decline in primary BAs as the PFAS mixture increased. We provided the first evidence of the association between intrauterine exposure to PFAS and its mixture with BAs in children. Further large-sample-size studies are needed to verify this finding.

17.
Chemistry ; : e202402132, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38973769

RESUMEN

The design of boron-based molecular rotors stems from boron-carbon binary clusters containing multiple planar hypercoordinate carbons (phCs, such as C2B8). However, the design of boron-coordinated phCs is challenging due to boron's tendency to occupy hypercoordinate centers more than carbon. Although this challenge has been addressed, the designed clusters of interest have not exhibited dynamic fluxionality similar to that of the initial C2B8. To address this issue, we report a σ/π doubly aromatic CB2H5 + cluster, the first global minimum containing a boron-coordinated planar tetracoordinate carbon atom with dynamic fluxionality. Dynamics simulations show that two ligand H atoms exhibit alternate rotation, resulting in an intriguing dynamic fluxionality in this cluster. Electronic structure analysis reveals the flexible bonding positions of the ligand H atoms because they do not participate in π delocalized bonding nor bond to any other non-carbon atom, highlighting this rotational fluxionality. Unprecedentedly, the fluxional process involves not only the usual conversion of the number of bonding atoms, but also the type of bonding (3c π bonds ↔4c σ bonds), which is an uncommon fluxional mechanism. The cluster represents an effort to apply phC species to molecular machines.

18.
Sensors (Basel) ; 24(14)2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-39065871

RESUMEN

Multivariate time series modeling has been essential in sensor-based data mining tasks. However, capturing complex dynamics caused by intra-variable (temporal) and inter-variable (spatial) relationships while simultaneously taking into account evolving data distributions is a non-trivial task, which faces accumulated computational overhead and multiple temporal patterns or distribution modes. Most existing methods focus on the former direction without adaptive task-specific learning ability. To this end, we developed a holistic spatial-temporal meta-learning probabilistic inference framework, entitled ST-MeLaPI, for the efficient and versatile learning of complex dynamics. Specifically, first, a multivariate relationship recognition module is utilized to learn task-specific inter-variable dependencies. Then, a multiview meta-learning and probabilistic inference strategy was designed to learn shared parameters while enabling the fast and flexible learning of task-specific parameters for different batches. At the core are spatial dependency-oriented and temporal pattern-oriented meta-learning approximate probabilistic inference modules, which can quickly adapt to changing environments via stochastic neurons at each timestamp. Finally, a gated aggregation scheme is leveraged to realize appropriate information selection for the generative style prediction. We benchmarked our approach against state-of-the-art methods with real-world data. The experimental results demonstrate the superiority of our approach over the baselines.

19.
Biomedicines ; 12(7)2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-39061994

RESUMEN

Ischemia-modified albumin (IMA) is produced during ischemia and reactive oxygen species production. This study aimed to evaluate the association between IMA and mortality in a larger population and the prognostic value of the combination of IMA and lactate for predicting mortality in septic shock patients in the emergency department. This retrospective observational study included adult septic shock patients between October 2019 and December 2021. A multivariable Cox proportional hazards model was performed. IMA was significantly higher in the non-surviving group than in the surviving group (89.1 ± 7.2 vs. 83.8 ± 6.2 U/mL, p < 0.001). IMA was independently associated with 28-day mortality after adjustments (adjusted hazard ratio [aHR]: 1.075, 95% confidence interval [CI]: 1.016-1.138, p = 0.012). The area under the ROC curve (AUROC) of IMA was 0.712 (95% CI: 0.648-0.775, p < 0.001) and was comparable to that of lactate. The AUROC of the combination of IMA and lactate was 0.838 (95% CI: 0.786-0.889, p < 0.001). The group with both high lactate and high IMA levels showed an extremely high risk of mortality than other groups (86.1%; aHR 8.956, 95% CI 4.071-19.70, p < 0.001). The elevation of IMA was associated with mortality in septic shock patients. The combination of IMA and lactate can be a helpful tool for early risk stratification of septic shock patients.

20.
PLoS Negl Trop Dis ; 18(7): e0012294, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38950072

RESUMEN

The scarcity of reliable devices for diagnosis of Animal African trypanosomiasis (AAT) presents a limitation to control of the disease. Existing high-sensitivity technologies such as PCR are costly, laborious, time-consuming, complex, and require skilled personnel. Hence, utilisation of most diagnostics for AAT is impracticable in rural areas, where the disease occurs. A more accessible point-of-care test (POCT) capable of detecting cryptic active infection, without relying on expensive equipment, would facilitate AAT detection. In turn, early management, would reduce disease incidence and severity. Today, several ongoing research projects aim at modifying complex immunoassays into POCTs. In this context, we report the development of an antigen (Ag) detection sandwich ELISA prototype for diagnosis of T. congolense infections, which is comprised of nanobody (Nb) and monoclonal antibody (mAb) reagents. The Nb474H used here, originated from a past study. Briefly, the Nb was engineered starting from mRNA of peripheral blood lymphocytes of an alpaca immunized with soluble lysate of Trypanosoma congolense (TC13). T. congolense glycosomal fructose-1,6-bisphosphate aldolase (TcoALD) was discovered as the cognate Ag of Nb474H. In this study, splenocytes were harvested from a mouse immunized with recombinant TcoALD and fused with NS01 cells to generate a hybridoma library. Random screening of the library on TcoALD retrieved a lone binder, designated IgM8A2. Using Nb474H as Ag-capture reagent in combination with the IgM8A2 monoclonal antibody Ag-detection reagent resulted in a tool that effectively detects native TcoALD released during infection by T. congolense parasites. Hitherto, development of POCT for detection of active trypanosome infection is elusive. The Nanobody/Monoclonal Antibody (Nb/mAb) "hybrid" sandwich technology offers prospects for exploration, using the unique specificity of Nb as a key determinant in Ag capturing, while using the versatility of monoclonal Ab to adapt to various detection conditions.


Asunto(s)
Anticuerpos Monoclonales , Anticuerpos Antiprotozoarios , Ensayo de Inmunoadsorción Enzimática , Trypanosoma congolense , Tripanosomiasis Africana , Tripanosomiasis Africana/diagnóstico , Tripanosomiasis Africana/inmunología , Animales , Trypanosoma congolense/inmunología , Anticuerpos Monoclonales/inmunología , Anticuerpos Antiprotozoarios/sangre , Anticuerpos Antiprotozoarios/inmunología , Ensayo de Inmunoadsorción Enzimática/métodos , Ratones , Anticuerpos de Dominio Único/inmunología , Antígenos de Protozoos/inmunología , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...