Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Cent Sci ; 7(9): 1493-1499, 2021 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-34584950

RESUMEN

The selective synthesis of energetically less favorable ring-shaped nanostructures by liquid phase synthetic chemistry is a huge challenge. Herein, we report a precise synthesis of carbon nanorings with a well-defined morphology and tunable thickness based on asymmetric intramicellar phase-transition-induced tip-to-tip assembly via mixing hydrophobic long-chain octadecanol and block copolymer F127. This orientational self-assembly depends on the hydrophobicity difference of the intermediate's surface, which triggers directional interactions that surpass the entropy cost of undesired connections and help assemble intermediates into defined ringlike structures. Based on a ringlike template, carbon nanorings with adjustable sizes can be attained by changing synthetic variables. More importantly, diverse units including crescentlike, podlike, and garlandlike nanostructures can also be created through controlling the kinetics of the self-assembly process. This discovery lays a solid foundation for the challenging construction of such a precise configuration on the nanoscale, which would not only promote fundamental studies but also pave the way for the development of advanced nanodevices with unique properties.

2.
Nanoscale ; 7(38): 16046-53, 2015 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-26371688

RESUMEN

Graphene/hexagonal boron nitride (h-BN) heterostructures have attracted a great deal of attention in recent years due to their unique and complementary properties for use in a wide range of potential applications. However, it still remains a challenge to synthesize large-area high quality samples by a scalable growth method. In this work, we present the synthesis of both in-plane and stacked graphene/h-BN heterostructures on Cu foils by sequentially depositing h-BN via ion beam sputtering deposition (IBSD) and graphene with chemical vapor deposition (CVD). Due to a significant difference in the growth rate of graphene on h-BN and Cu, the in-plane graphene/h-BN heterostructures were rapidly formed on h-BN domain/Cu substrates. The large-area vertically stacked graphene/h-BN heterostructures were obtained by using the continuous h-BN film as a substrate. Furthermore, the well-designed sub-bilayered h-BN substrates provide direct evidence that the monolayered h-BN on Cu exhibits higher catalytic activity than the bilayered h-BN on Cu. The growth method applied here may have great potential in the scalable preparation of large-area high-quality graphene/h-BN heterostructures.

3.
Nat Commun ; 4: 1776, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23653188

RESUMEN

Developments in semiconductor technology are propelling the dimensions of devices down to 10 nm, but facing great challenges in manufacture at the sub-10 nm scale. Nanotechnology can fabricate nanoribbons from two-dimensional atomic crystals, such as graphene, with widths below the 10 nm threshold, but their geometries and properties have been hard to control at this scale. Here we find that robust ultrafine molybdenum-sulfide ribbons with a uniform width of 0.35 nm can be widely formed between holes created in a MoS2 sheet under electron irradiation. In situ high-resolution transmission electron microscope characterization, combined with first-principles calculations, identifies the sub-1 nm ribbon as a Mo5S4 crystal derived from MoS2, through a spontaneous phase transition. Further first-principles investigations show that the Mo5S4 ribbon has a band gap of 0.77 eV, a Young's modulus of 300GPa and can demonstrate 9% tensile strain before fracture. The results show a novel top-down route for controllable fabrication of functional building blocks for sub-nanometre electronics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...