Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Bioeng Biotechnol ; 10: 1114034, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36698642

RESUMEN

The cells and tissue in the human body are orderly and directionally arranged, and constructing an ideal biomimetic extracellular matrix is still a major problem to be solved in tissue engineering. In the field of the bioresorbable vascular grafts, the long-term functional prognosis requires that cells first migrate and grow along the physiological arrangement direction of the vessel itself. Moreover, the graft is required to promote the formation of neointima and the development of the vessel walls while ensuring that the whole repair process does not form a thrombus. In this study, poly (l-lactide-co-ε-caprolactone) (PLCL) shell layers and polyethylene oxide (PEO) core layers with different microstructures and loaded with sodium tanshinone IIA sulfonate (STS) were prepared by coaxial electrospinning. The mechanical properties proved that the fiber membranes had good mechanical support, higher than that of the human aorta, as well as great suture retention strengths. The hydrophilicity of the oriented-fiber membranes was greatly improved compared with that of the random-fiber membranes. Furthermore, we investigated the biocompatibility and hemocompatibility of different functional fiber membranes, and the results showed that the oriented-fiber membranes containing sodium tanshinone IIA sulfonate had an excellent antiplatelet adhesion effect compared to other fiber membranes. Cytological analysis confirmed that the functional fiber membranes were non-cytotoxic and had significant cell proliferation capacities. The oriented-fiber membranes induced cell growth along the orientation direction. Degradation tests showed that the pH variation range had little change, the material mass was gradually reduced, and the fiber morphology was slowly destroyed. Thus, results indicated the degradation rate of the oriented-fiber graft likely is suitable for the process of new tissue regeneration, while the random-fiber graft with a low degradation rate may cause the material to reside in the tissue for too long, which would impede new tissue reconstitution. In summary, the oriented-functional-fiber membranes possessing core-shell structures with sodium tanshinone IIA sulfonate/polyethylene oxide loading could be used as tissue engineering materials for applications such as vascular grafts with good prospects, and their clinical application potential will be further explored in future research.

2.
Nanomaterials (Basel) ; 11(7)2021 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-34201582

RESUMEN

The advantage of low resistivity and inactive binders makes binder-free electrode an excellent candidate for high-performance energy devices. A simple hydrothermal method was used to fabricate M11(HPO3)8(OH)6 (M: Ni and Co) (MHP) arrays combined with activated carbon fabric (ACF) without binder. The structures of MHP can be easily tuned from bouquets to nano-sheets by the concentration of NaH2PO2. The MHP/ACF composite materials with different structures showed the typical battery-type characteristic of anodic electrodes. In a three-electrode cell configuration, the MHP nano-sheet arrays/ACF composite has a higher capacity, of 1254 F/g, at a scan rate of 10 mA/cm2 and shows better cycling stability: 84.3% remaining specific capacity after 1000 cycles of charge-discharge measurement. The composite is highly flexible, with almost the same electrochemical performance under stretching mode. The MHP/ACF composite@ACF hybrid supercapacitor can deliver the highest energy density, of 34.1 Wh·kg-1, and a power density of 722 W·kg-1 at 1 A·g-1. As indicated by the results, MHP/ACF composite materials are excellent binder-free electrodes, candidates for flexible high-performance hybrid super-capacitor devices.

3.
Nanotechnology ; 22(3): 035602, 2011 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-21149966

RESUMEN

Tb(3+)-doped Gd(2)O(3) (Gd(2)O(3):Tb(3+)) nanofibers were prepared via a simple electrospinning technique using poly(ethylene oxide) (PEO) and rare-earth acetate tetrahydrates (Ln(CH(3)COO)(3)·4H(2)O (Ln = Gd, Tb)) as precursors. The obtained nanofibers have an average diameter of about 80 nm and are composed of pure cubic Gd(2)O(3) phase. A possible formation mechanism for the nanofibers is proposed on the basis of the experimental results, which reveals that PEO acts as the structure directing template during the whole electrospinning and subsequent calcination process. The luminescent properties of the nanofibers were investigated in detail. The nanofibers exhibit a favorable fluorescent property symbolized by the characteristic green emission (545 nm) resulting from the 5D4-->7F5 transition of Tb(3+). Concentration quenching occurs when the Tb(3+) concentration is 3 at.%, indicating that the Gd(2)O(3):Tb(3+) nanofibers have an optimum luminescent intensity under such a doping concentration.

4.
Ultrason Sonochem ; 17(1): 7-10, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19577946

RESUMEN

Novel nut-like zinc oxide crystal has been prepared by a low temperature hydrothermal method with the presence of Cu(2+) ion. It seemed that the ultrasonic pretreatment was the key factor during the preparation process. SEM observations revealed that the as-prepared ZnO crystal exhibited nut shape showing well-defined crystallographic facets. The cross-section of the ZnO crystal was hexagonal of about 800 nm-1 microm in diameter, and the aspect ratio was a little smaller than 1:1. The room temperature photoluminescence behavior of the nut-like zinc oxide crystal was much stronger than the reference samples.


Asunto(s)
Mediciones Luminiscentes/métodos , Nueces/ultraestructura , Sonicación/métodos , Óxido de Zinc/síntesis química , Óxido de Zinc/efectos de la radiación , Materiales Biomiméticos/química , Materiales Biomiméticos/efectos de la radiación , Cristalización/métodos , Ensayo de Materiales , Nueces/efectos de la radiación , Tamaño de la Partícula , Propiedades de Superficie
5.
J Nanosci Nanotechnol ; 8(3): 1427-31, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18468168

RESUMEN

Eu(2-x)Sm(x)Sn2O7 (x = 0, 0.1, 0.5, 1.0, 1.5, and 2.0) solid solutions were successfully synthesized by a simple, mild hydrothermal process. The crystal structure, particle size, and chemical composition of the solid solutions were characterized by X-ray diffraction, transmission electron microscopy, and energy dispersive X-ray spectroscopy. X-ray diffraction patterns and transmission electron microscopy images reveal that all the products were cubic pyrochlore-type Eu(2-x)Sm(x)Sn2O7 nanocrystals with the diameter of approximately 20 nm. Due to efficient energy transfer from Sm3+ to Eu3+, the Eu(2-x)Sm(x)Sn2O7 (x = 0.1, 0.5, 1.0, and 1.5) nanocrystals exhibited strong 5D0 --> 7F1 photoluminescence emission of Eu3+. The dominant 5D0 --> 7F1 transition revealed good monochromaticity and low distortion of the Eu(2-x)Sm(x)Sn2O7 nanophosphors.

6.
J Phys Chem B ; 110(15): 7631-4, 2006 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-16610852

RESUMEN

Single crystalline Zn(2)SnO(4) (ZTO) nanorods 2-4 nm in diameter and around 20 nm in length were successfully synthesized by a simple hydrothermal process with use of hydrazine hydrate as an alkaline mineralizer instead of NaOH or NH(3).H(2)O. By analyzing the UV-vis diffuse reflectance spectrum, the optical band gap (E(g)) of the nanorods was found to be 3.87 eV, which indicates a blue shift of 0.27 eV from that of bulk ZTO (3.6 eV). In situ high-temperature X-ray diffraction was employed to study the thermal expansion coefficient and the variation of lattice parameter with temperature of the product. Furthermore, we discussed the chemical mechanism and key factors to the hydrothermal formation of the sub-5 nm ZTO nanorods.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...