Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Cell Mol Med ; 28(11): e18370, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38818568

RESUMEN

The Finkel-Biskis-Jinkins Osteosarcoma (c-Fos; encoded by FOS) plays an important role in several cardiovascular diseases, including atherosclerosis and stroke. However, the relationship between FOS and venous thromboembolism (VTE) remains unknown. We identified differentially expressed genes in Gene Expression Omnibus dataset, GSE48000, comprising VTE patients and healthy individuals, and analysed them using CIBERSORT and weighted co-expression network analysis (WGCNA). FOS and CD46 expressions were significantly downregulated (FOS p = 2.26E-05, CD64 p = 8.83E-05) and strongly linked to neutrophil activity in VTE. We used GSE19151 and performed PCR to confirm that FOS and CD46 had diagnostic potential for VTE; however, only FOS showed differential expression by PCR and ELISA in whole blood samples. Moreover, we found that hsa-miR-144 which regulates FOS expression was significantly upregulated in VTE. Furthermore, FOS expression was significantly downregulated in neutrophils of VTE patients (p = 0.03). RNA sequencing performed on whole blood samples of VTE patients showed that FOS exerted its effects in VTE via the leptin-mediated adipokine signalling pathway. Our results suggest that FOS and related genes or proteins can outperform traditional clinical markers and may be used as diagnostic biomarkers for VTE.


Asunto(s)
Biología Computacional , MicroARNs , Neutrófilos , Proteínas Proto-Oncogénicas c-fos , Tromboembolia Venosa , Humanos , MicroARNs/genética , MicroARNs/sangre , MicroARNs/metabolismo , Neutrófilos/metabolismo , Tromboembolia Venosa/genética , Tromboembolia Venosa/metabolismo , Tromboembolia Venosa/sangre , Biología Computacional/métodos , Proteínas Proto-Oncogénicas c-fos/genética , Proteínas Proto-Oncogénicas c-fos/metabolismo , Regulación de la Expresión Génica , Masculino , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Femenino , Biomarcadores/sangre , Biomarcadores/metabolismo
2.
Vasc Med ; 28(6): 604-613, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37756313

RESUMEN

Aortic aneurysm (AA) and aortic dissection (AD) are prevalent severe cardiovascular diseases that result in catastrophic complications and unexpected deaths. Owing to the lack of clinically established and effective medications, the only treatment options are open surgical repair or endovascular therapy. Most researchers have focused on the development of innovative medications or therapeutic targets to slow the progression of AA/AD or lower the risk of malignant consequences. Recent studies have shown that the use of fluoroquinolones (FQs) may increase susceptibility to AA/AD to some extent, especially in patients with aortic dilatation and those at a high risk of AD. Therefore, it is crucial for doctors, particularly those in cardiovascular specialties, to recognize the dangers of FQs and adopt alternatives. In the present review, the main clinical observational studies on the correlation between FQs and AA/AD in recent years are summarized, with an emphasis on the relative physiopathological mechanism incorporating destruction of the extracellular matrix (ECM), phenotypic transformation of vascular smooth muscle cells, and local inflammation. Although additional data are required, it is anticipated that the rational use of FQs will become the standard of care for the treatment of aortic diseases.


Asunto(s)
Aneurisma de la Aorta , Disección Aórtica , Humanos , Fluoroquinolonas/efectos adversos , Disección Aórtica/inducido químicamente , Inflamación
3.
Cell Commun Signal ; 21(1): 113, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-37189183

RESUMEN

BACKGROUND AND OBJECTIVES: Phenotypic switching in vascular smooth muscle cells (VSMCs) has been linked to aortic aneurysm, but the phenotypic landscape in aortic aneurysm is poorly understood. The present study aimed to analyse the phenotypic landscape, phenotypic differentiation trajectory, and potential functions of various VSMCs phenotypes in aortic aneurysm. METHODS: Single-cell sequencing data of 12 aortic aneurysm samples and 5 normal aorta samples (obtained from GSE166676 and GSE155468) were integrated by the R package Harmony. VSMCs were identified according to the expression levels of ACTA2 and MYH11. VSMCs clustering was determined by the R package 'Seurat'. Cell annotation was determined by the R package 'singleR' and background knowledge of VSMCs phenotypic switching. The secretion of collagen, proteinases, and chemokines by each VSMCs phenotype was assessed. Cell‒cell junctions and cell-matrix junctions were also scored by examining the expression of adhesion genes. Trajectory analysis was performed by the R package 'Monocle2'. qPCR was used to quantify VSMCs markers. RNA fluorescence in situ hybridization (RNA FISH) was performed to determine the spatial localization of vital VSMCs phenotypes in aortic aneurysms. RESULTS: A total of 7150 VSMCs were categorize into 6 phenotypes: contractile VSMCs, fibroblast-like VSMCs, T-cell-like VSMCs, adipocyte-like VSMCs, macrophage-like VSMCs, and mesenchymal-like VSMCs. The proportions of T-cell-like VSMCs, adipocyte-like VSMCs, macrophage-like VSMCs, and mesenchymal-like VSMCs were significantly increased in aortic aneurysm. Fibroblast-like VSMCs secreted abundant amounts of collagens. T-cell-like VSMCs and macrophage-like VSMCs were characterized by high chemokine levels and proinflammatory effects. Adipocyte-like VSMCs and mesenchymal-like VSMCs were associated with high proteinase levels. RNA FISH validated the presence of T-cell-like VSMCs and macrophage-like VSMCs in the tunica media and the presence of mesenchymal-like VSMCs in the tunica media and tunica adventitia. CONCLUSION: A variety of VSMCs phenotypes are involved in the formation of aortic aneurysm. T-cell-like VSMCs, macrophage-like VSMCs, and mesenchymal-like VSMCs play pivotal roles in this process. Video Abstract.


Asunto(s)
Aneurisma de la Aorta , Músculo Liso Vascular , Humanos , Hibridación Fluorescente in Situ , Aneurisma de la Aorta/genética , Aneurisma de la Aorta/metabolismo , Fenotipo , ARN/metabolismo , Análisis de Secuencia de ARN , Miocitos del Músculo Liso/metabolismo
4.
Cell Commun Signal ; 20(1): 180, 2022 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-36411459

RESUMEN

Vascular smooth muscle cells (VSMCs) are the most abundant cell in vessels. Earlier experiments have found that VSMCs possess high plasticity. Vascular injury stimulates VSMCs to switch into a dedifferentiated type, also known as synthetic VSMCs, with a high migration and proliferation capacity for repairing vascular injury. In recent years, largely owing to rapid technological advances in single-cell sequencing and cell-lineage tracing techniques, multiple VSMCs phenotypes have been uncovered in vascular aging, atherosclerosis (AS), aortic aneurysm (AA), etc. These VSMCs all down-regulate contractile proteins such as α-SMA and calponin1, and obtain specific markers and similar cellular functions of osteoblast, fibroblast, macrophage, and mesenchymal cells. This highly plastic phenotype transformation is regulated by a complex network consisting of circulating plasma substances, transcription factors, growth factors, inflammatory factors, non-coding RNAs, integrin family, and Notch pathway. This review focuses on phenotypic characteristics, molecular profile and the functional role of VSMCs phenotype landscape; the molecular mechanism regulating VSMCs phenotype switching; and the contribution of VSMCs phenotype switching to vascular aging, AS, and AA. Video Abstract.


Asunto(s)
Aterosclerosis , Lesiones del Sistema Vascular , Humanos , Músculo Liso Vascular/fisiología , Lesiones del Sistema Vascular/metabolismo , Proliferación Celular , Fenotipo , Aterosclerosis/metabolismo
6.
J Thromb Thrombolysis ; 36(4): 458-68, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23728739

RESUMEN

Blood reperfusion of affected limbs is the most effective therapy for peripheral vascular thrombotic disease, restoring nutrition and blood flow to threatened tissues. Because it is more cost-effective than other thrombolytics, urokinase (UK) is widely used to treat venous thrombosis in China. However, its use is limited because of the risk of UK-related hemorrhagic complications. UK-coated nanoparticles (NPs) may decrease adverse effects while simultaneously increasing thrombolytic benefits. The aim of this study was to combine the sustained-release properties of NPs with the clinical benefits of catheter-directed thrombolysis (CDT) to create a promising new therapy. NPs were prepared via self-assembled chitosan and tripolyphosphate, introduced into a thrombosis model in New Zealand white rabbits, and the ratio of the residual thrombus cross-sectional area to the vascular cross-sectional area was calculated. The NPs had a drug-bearing efficiency of 14.5 ± 1.3%, an encapsulation efficiency of 94.8 ± 2.1% while the particle size of UK-coated NPs was 236 nm. Transmission electron microscopy results showed that the shape of the NPs were spherical and regular. Whether delivered by intravenation or catheter, UK-coated NPs produced a significant increase in the thrombolytic effect compared with free UK and confirmed the superiority of CDT for improving clot lysis over drug-induced systemic thrombolysis. The intravenous NPs caused an abnormal increase in fibrinogen. In conclusion, a water-soluble UK-WCS-NP suspension with good encapsulation efficiency was easily prepared UK-WCS-NPs were capable of maintaining UK activity, provided sustained-release of UK and exhibited better thrombolytic function than free UK.


Asunto(s)
Quitosano , Nanopartículas/química , Terapia Trombolítica/métodos , Activador de Plasminógeno de Tipo Uroquinasa , Trombosis de la Vena , Animales , Quitosano/química , Quitosano/farmacocinética , Quitosano/farmacología , Masculino , Conejos , Activador de Plasminógeno de Tipo Uroquinasa/química , Activador de Plasminógeno de Tipo Uroquinasa/farmacocinética , Activador de Plasminógeno de Tipo Uroquinasa/farmacología , Trombosis de la Vena/sangre , Trombosis de la Vena/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA