Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Sci Adv ; 9(41): eadi1535, 2023 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-37831774

RESUMEN

Forces are central to countless cellular processes, yet in vivo force measurement at the molecular scale remains difficult if not impossible. During clathrin-mediated endocytosis, forces produced by the actin cytoskeleton are transmitted to the plasma membrane by a multiprotein coat for membrane deformation. However, the magnitudes of these forces remain unknown. Here, we present new in vivo force sensors that induce protein condensation under force. We measured the forces on the fission yeast Huntingtin-Interacting Protein 1 Related (HIP1R) homolog End4p, a protein that links the membrane to the actin cytoskeleton. End4p is under ~19-piconewton force near the actin cytoskeleton, ~11 piconewtons near the clathrin lattice, and ~9 piconewtons near the plasma membrane. Our results demonstrate that forces are collected and redistributed across the endocytic machinery.


Asunto(s)
Citoesqueleto de Actina , Actinas , Actinas/metabolismo , Unión Proteica , Citoesqueleto de Actina/metabolismo , Clatrina/metabolismo , Endocitosis , Membrana Celular/metabolismo
2.
Crit Rev Anal Chem ; : 1-13, 2023 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-37393560

RESUMEN

Emulsions are dispersed systems widely used in various industries. In recent years, Raman spectroscopy (RS), as a spectroscopic technique, has gained much attention for measuring and monitoring emulsions. In this review, we explore the use of RS on emulsion structures and emulsification, important reactions that use emulsions such as emulsion polymerization, catalysis and cascading reactions, as well as various applications of emulsions. We explore how RS is used in emulsions, reactions and applications. RS is a powerful and versatile tool for studying emulsions, but there are also challenges in using RS to monitor emulsion processes, especially if they are rapid or volatile. We also explore these challenges and difficulties, as well as possible designs that can be used to overcome them.

3.
Proc Natl Acad Sci U S A ; 119(49): e2215124119, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36454760

RESUMEN

Munc18 chaperones assembly of three membrane-anchored soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) into a four-helix bundle to mediate membrane fusion between vesicles and plasma membranes, leading to neurotransmitter or insulin release, glucose transporter (GLUT4) translocation, or other exocytotic processes. Yet, the molecular mechanism underlying chaperoned SNARE assembly is not well understood. Recent evidence suggests that Munc18-1 and Munc18-3 simultaneously bind their cognate SNAREs to form ternary template complexes - Munc18-1:Syntaxin-1:VAMP2 for synaptic vesicle fusion and Munc18-3:Syntaxin-4:VAMP2 for GLUT4 translocation and insulin release, which facilitate the binding of SNAP-25 or SNAP-23 to conclude SNARE assembly. Here, we further investigate the structure, dynamics, and function of the template complexes using optical tweezers. Our results suggest that the synaptic template complex transitions to an activated state with a rate of 0.054 s-1 for efficient SNAP-25 binding. The transition depends upon the linker region of syntaxin-1 upstream of its helical bundle-forming SNARE motif. In addition, the template complex is stabilized by a poorly characterized disordered loop region in Munc18-1. While the synaptic template complex efficiently binds both SNAP-25 and SNAP-23, the GLUT4 template complex strongly favors SNAP-23 over SNAP-25, despite the similar stabilities of their assembled SNARE bundles. Together, our data demonstrate that a highly dynamic template complex mediates efficient and specific SNARE assembly.


Asunto(s)
Fusión de Membrana , Proteína 2 de Membrana Asociada a Vesículas , Sintaxina 1 , Chaperonas Moleculares , Proteínas Qa-SNARE/genética , Insulina
4.
Methods Mol Biol ; 2478: 461-481, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36063331

RESUMEN

Intracellular membrane fusion is primarily driven by coupled folding and assembly of soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs). SNARE assembly is intrinsically inefficient and must be chaperoned by a family of evolutionarily and structurally conserved Sec1/Munc-18 (SM) proteins. The physiological pathway of the chaperoned SNARE assembly has not been well understood, partly due to the difficulty in dissecting the many intermediates and pathways of SNARE assembly and measure their associated energetics and kinetics. Optical tweezers have proven to be a powerful tool to characterize the intermediates involved in the chaperoned SNARE assembly. Here, we demonstrate the application of optical tweezers combined with a homemade microfluidic system into studies of synaptic SNARE assembly chaperoned by their cognate SM protein Munc18-1. Three synaptic SNAREs and Munc18-1 constitute the core machinery for synaptic vesicle fusion involved in neurotransmitter release. Many other proteins further regulate the core machinery to enable fusion at the right time and location. The methods described here can be applied to other proteins that regulate SNARE assembly to control membrane fusion involved in numerous biological and physiological processes.


Asunto(s)
Fusión de Membrana , Proteínas SNARE , Exocitosis , Fusión de Membrana/fisiología , Chaperonas Moleculares/metabolismo , Proteínas Munc18/metabolismo , Pinzas Ópticas , Unión Proteica , Proteínas SNARE/metabolismo
5.
Light Sci Appl ; 11(1): 235, 2022 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-35882840

RESUMEN

The light-matter interaction between plasmonic nanocavity and exciton at the sub-diffraction limit is a central research field in nanophotonics. Here, we demonstrated the vertical distribution of the light-matter interactions at ~1 nm spatial resolution by coupling A excitons of MoS2 and gap-mode plasmonic nanocavities. Moreover, we observed the significant photoluminescence (PL) enhancement factor reaching up to 2800 times, which is attributed to the Purcell effect and large local density of states in gap-mode plasmonic nanocavities. Meanwhile, the theoretical calculations are well reproduced and support the experimental results.

6.
Biophys J ; 120(24): 5454-5465, 2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34813728

RESUMEN

Despite their wide applications in soluble macromolecules, optical tweezers have rarely been used to characterize the dynamics of membrane proteins, mainly due to the lack of model membranes compatible with optical trapping. Here, we examined optical trapping and mechanical properties of two potential model membranes, giant and small unilamellar vesicles (GUVs and SUVs, respectively) for studies of membrane protein dynamics. We found that optical tweezers can stably trap GUVs containing iodixanol with controlled membrane tension. The trapped GUVs with high membrane tension can serve as a force sensor to accurately detect reversible folding of a DNA hairpin or membrane binding of synaptotagmin-1 C2AB domain attached to the GUV. We also observed that SUVs are rigid enough to resist large pulling forces and are suitable for detecting protein conformational changes induced by force. Our methodologies may facilitate single-molecule manipulation studies of membrane proteins using optical tweezers.


Asunto(s)
Pinzas Ópticas , Liposomas Unilamelares , Sustancias Macromoleculares , Proteínas de la Membrana/metabolismo , Membranas/metabolismo , Liposomas Unilamelares/química
7.
Anal Chem ; 93(17): 6573-6582, 2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33885277

RESUMEN

Probing the properties and components of reactive surfaces is crucial for illustrating reaction mechanisms. However, common surface analysis techniques are restricted to in situ acquisition of surface information at the molecular scale in the human environment and industrial catalysis processes. Plasmonic spectroscopies are promising tools to solve this problem. This Feature is intended to introduce the plasmonic core-shell nanoparticle enhanced spectroscopies for qualitatively and quantitatively analyzing surface trace species. Four different working modalities are designed for meeting varied needs, involving in situ surface species detection, catalytic process monitoring, labeled sensing, and dual mode analysis. These newly developed plasmonic spectroscopies show great potential not only in fundamental research but also in practical applications.

8.
FEBS Lett ; 595(3): 297-309, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33222163

RESUMEN

Synaptic vesicle fusion is mediated by SNARE proteins-VAMP2 on the vesicle and Syntaxin-1/SNAP25 on the presynaptic membrane. Chaperones Munc18-1 and Munc13-1 cooperatively catalyze SNARE assembly via an intermediate 'template' complex containing Syntaxin-1 and VAMP2. How SNAP25 enters this reaction remains a mystery. Here, we report that Munc13-1 recruits SNAP25 to initiate the ternary SNARE complex assembly by direct binding, as judged by bulk FRET spectroscopy and single-molecule optical tweezer studies. Detailed structure-function analyses show that the binding is mediated by the Munc13-1 MUN domain and is specific for the SNAP25 'linker' region that connects the two SNARE motifs. Consequently, freely diffusing SNAP25 molecules on phospholipid bilayers are concentrated and bound in ~ 1 : 1 stoichiometry by the self-assembled Munc13-1 nanoclusters.


Asunto(s)
Liposomas/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteína 25 Asociada a Sinaptosomas/metabolismo , Sintaxina 1/metabolismo , Proteína 2 de Membrana Asociada a Vesículas/metabolismo , Animales , Sitios de Unión , Clonación Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Liposomas/química , Ratones , Modelos Moleculares , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Pinzas Ópticas , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismo , Fosfatidiletanolaminas/química , Fosfatidiletanolaminas/metabolismo , Fosfatidilserinas/química , Fosfatidilserinas/metabolismo , Polietilenglicoles/química , Polietilenglicoles/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteína 25 Asociada a Sinaptosomas/química , Proteína 25 Asociada a Sinaptosomas/genética , Sintaxina 1/química , Sintaxina 1/genética , Proteína 2 de Membrana Asociada a Vesículas/química , Proteína 2 de Membrana Asociada a Vesículas/genética
9.
Spectrochim Acta A Mol Biomol Spectrosc ; 243: 118753, 2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-32805506

RESUMEN

Pathogenic bio-aerosols are a threat to public health today, and thus quick detection and identification is of paramount importance. In this study, Raman spectroscopy was used to test 14 types of pollens, one type of fungus and two types of bacteria that are commonly found in bio-aerosols. For bacteria and fungus, surface enhanced Raman spectroscopy (SERS) was used due to their relatively weak signals. Data analysis was performed on the Raman measurement results; principal component analysis was used to reduce the dimension of the data, and support vector machine was used to establish a model for sample identification. The model was able to identify data in the validation set with high (97.3%) accuracy.


Asunto(s)
Espectrometría Raman , Máquina de Vectores de Soporte , Aerosoles , Bacterias , Análisis de Componente Principal
10.
Proc Natl Acad Sci U S A ; 117(2): 1036-1041, 2020 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-31888993

RESUMEN

Munc13-1 is a large multifunctional protein essential for synaptic vesicle fusion and neurotransmitter release. Its dysfunction has been linked to many neurological disorders. Evidence suggests that the MUN domain of Munc13-1 collaborates with Munc18-1 to initiate SNARE assembly, thereby priming vesicles for fast calcium-triggered vesicle fusion. The underlying molecular mechanism, however, is poorly understood. Recently, it was found that Munc18-1 catalyzes neuronal SNARE assembly through an obligate template complex intermediate containing Munc18-1 and 2 SNARE proteins-syntaxin 1 and VAMP2. Here, using single-molecule force spectroscopy, we discovered that the MUN domain of Munc13-1 stabilizes the template complex by ∼2.1 kBT. The MUN-bound template complex enhances SNAP-25 binding to the templated SNAREs and subsequent full SNARE assembly. Mutational studies suggest that the MUN-bound template complex is functionally important for SNARE assembly and neurotransmitter release. Taken together, our observations provide a potential molecular mechanism by which Munc13-1 and Munc18-1 cooperatively chaperone SNARE folding and assembly, thereby regulating synaptic vesicle fusion.


Asunto(s)
Chaperonas Moleculares/metabolismo , Proteínas Munc18/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas SNARE/metabolismo , Exocitosis/fisiología , Cinética , Fusión de Membrana/fisiología , Chaperonas Moleculares/química , Proteínas Munc18/química , Proteínas del Tejido Nervioso/química , Neuronas/metabolismo , Pinzas Ópticas , Unión Proteica , Dominios Proteicos , Proteínas Qa-SNARE/metabolismo , Proteínas SNARE/química , Transmisión Sináptica/fisiología , Vesículas Sinápticas/metabolismo , Proteína 25 Asociada a Sinaptosomas/química , Proteína 25 Asociada a Sinaptosomas/metabolismo , Sintaxina 1/metabolismo , Proteína 2 de Membrana Asociada a Vesículas/metabolismo
11.
Elife ; 72018 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-30540253

RESUMEN

Sec1/Munc18-family (SM) proteins are required for SNARE-mediated membrane fusion, but their mechanism(s) of action remain controversial. Using single-molecule force spectroscopy, we found that the SM protein Munc18-1 catalyzes step-wise zippering of three synaptic SNAREs (syntaxin, VAMP2, and SNAP-25) into a four-helix bundle. Catalysis requires formation of an intermediate template complex in which Munc18-1 juxtaposes the N-terminal regions of the SNARE motifs of syntaxin and VAMP2, while keeping their C-terminal regions separated. SNAP-25 binds the templated SNAREs to induce full SNARE zippering. Munc18-1 mutations modulate the stability of the template complex in a manner consistent with their effects on membrane fusion, indicating that chaperoned SNARE assembly is essential for exocytosis. Two other SM proteins, Munc18-3 and Vps33, similarly chaperone SNARE assembly via a template complex, suggesting that SM protein mechanism is conserved.


Asunto(s)
Neuronas/metabolismo , Proteínas SNARE/metabolismo , Secuencia de Aminoácidos , Animales , Exocitosis , Humanos , Fusión de Membrana , Proteínas Munc18/genética , Proteínas Munc18/metabolismo , Mutación , Unión Proteica , Ratas , Proteínas SNARE/genética , Homología de Secuencia de Aminoácido , Proteína 25 Asociada a Sinaptosomas/genética , Proteína 25 Asociada a Sinaptosomas/metabolismo , Sintaxina 1/genética , Sintaxina 1/metabolismo , Proteína 2 de Membrana Asociada a Vesículas/genética , Proteína 2 de Membrana Asociada a Vesículas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...