RESUMEN
Cannabidiol (CBD) is the main component of plant Cannabis (Cannabis sativa), which exhibits strong antioxidant and anti-inflammatory activities. With the legalization of CBD in the United States, it is an inevitable tendency for its global legalization in the future. Therefore, it has become an urgent task to conduct the toxicological evaluation of CBD before clinical application. In this study, the developmental toxicities of CBD on zebrafish embryos were systematically evaluated, and the mechanisms were revealed. The results showed that the phenotype of liver degeneration was observed in 96 hpf zebrafish embryos after 0.1-5 µmol/L CBD exposure, further RT-qPCR experiments indicated that the above result may attributed by the alterations of FABP10A, GCLC, and GSR. Besides, 1 and 5 µmol/L CBD contributed to the developmental toxicities of heart and eye in zebrafish embryos, characterizing by the decrease in heart rate, the phenotype of pericardial edema, and the reduce of eye area. Compared to other organs, the liver of zebrafish displayed the most sensitive characteristic to CBD exposure, as 0.1 µmol/L CBD already led to the phenotype of liver degeneration. In summary, this paper provided theoretical supports for CBD toxicology research, and laid the foundation for its future clinical application.
RESUMEN
Since the release of the complete human genome, the priority of human genomic study has now been shifting towards closing gaps in ethnic diversity. Here, we present a fully phased and well-annotated diploid human genome from a Han Chinese male individual (CN1), in which the assemblies of both haploids achieve the telomere-to-telomere (T2T) level. Comparison of this diploid genome with the CHM13 haploid T2T genome revealed significant variations in the centromere. Outside the centromere, we discovered 11,413 structural variations, including numerous novel ones. We also detected thousands of CN1 alleles that have accumulated high substitution rates and a few that have been under positive selection in the East Asian population. Further, we found that CN1 outperforms CHM13 as a reference genome in mapping and variant calling for the East Asian population owing to the distinct structural variants of the two references. Comparison of SNP calling for a large cohort of 8869 Chinese genomes using CN1 and CHM13 as reference respectively showed that the reference bias profoundly impacts rare SNP calling, with nearly 2 million rare SNPs miss-called with different reference genomes. Finally, applying the CN1 as a reference, we discovered 5.80 Mb and 4.21 Mb putative introgression sequences from Neanderthal and Denisovan, respectively, including many East Asian specific ones undetected using CHM13 as the reference. Our analyses reveal the advances of using CN1 as a reference for population genomic studies and paleo-genomic studies. This complete genome will serve as an alternative reference for future genomic studies on the East Asian population.
Asunto(s)
Diploidia , Pueblos del Este de Asia , Genoma Humano , Telómero , Humanos , Masculino , Pueblo Asiatico/genética , Pueblos del Este de Asia/etnología , Pueblos del Este de Asia/genética , Genoma Humano/genética , Genómica , Telómero/genéticaRESUMEN
The Y chromosome usually plays a critical role in determining male sex and comprises sequence classes that have experienced unique evolutionary trajectories. Here we generated 19 new primate sex chromosome assemblies, analysed them with 10 existing assemblies and report rapid evolution of the Y chromosome across primates. The pseudoautosomal boundary has shifted at least six times during primate evolution, leading to the formation of a Simiiformes-specific evolutionary stratum and to the independent start of young strata in Catarrhini and Platyrrhini. Different primate lineages experienced different rates of gene loss and structural and chromatin change on their Y chromosomes. Selection on several Y-linked genes has contributed to the evolution of male developmental traits across the primates. Additionally, lineage-specific expansions of ampliconic regions have further increased the diversification of the structure and gene composition of the Y chromosome. Overall, our comprehensive analysis has broadened our knowledge of the evolution of the primate Y chromosome.
Asunto(s)
Evolución Molecular , Cromosoma Y , Animales , Masculino , Cromosoma Y/genética , Primates/genéticaRESUMEN
The Chinese forest musk deer (Moschus berezovskii; FMD) is an artiodactyl mammal and is both economically valuable and highly endangered. To investigate the genetic mechanisms of musk secretion and adaptive immunity in FMD, we compared its genome to nine other artiodactyl genomes. Comparative genomics demonstrated that eight positively selected genes (PSGs) in FMD were annotated in three KEGG pathways that were related to metabolic and synthetic activity of musk, similar to previous transcriptome studies. Functional enrichment analysis indicated that many PSGs were involved in the regulation of immune system processes, implying important reorganization of the immune system in FMD. FMD-specific missense mutations were found in two PSGs (MHC class II antigen DRA and ADA) that were classified as deleterious by PolyPhen-2, possibly contributing to immune adaptation to infectious diseases. Functional assessment showed that the FMD-specific mutation enhanced the ADA activity, which was likely to strengthen the immune defense against pathogenic invasion. Single nucleotide polymorphism-based inference showed the recent demographic trajectory for FMD. Our data and findings provide valuable genomic resources not only for studying the genetic mechanisms of musk secretion and adaptive immunity, but also for facilitating more effective management of the captive breeding programs for this endangered species.
Asunto(s)
Inmunidad Adaptativa , Ciervos/fisiología , Ácidos Grasos Monoinsaturados/metabolismo , Filogenia , Secuencia de Aminoácidos , Animales , Genes MHC Clase II , Genoma , Masculino , Familia de Multigenes , Mutación Missense , Dinámica Poblacional , Selección GenéticaRESUMEN
Raptors are carnivorous birds including accipitrids (Accipitridae, Accipitriformes) and owls (Strigiformes), which are diurnal and nocturnal, respectively. To examine the evolutionary basis of adaptations to different light cycles and hunting behavior between accipitrids and owls, we de novo assembled besra (Accipiter virgatus, Accipitridae, Accipitriformes) and oriental scops owl (Otus sunia, Strigidae, Strigiformes) draft genomes. Comparative genomics demonstrated four PSGs (positively selected genes) (XRCC5, PRIMPOL, MDM2, and SIRT1) related to the response to ultraviolet (UV) radiation in accipitrids, and one PSG (ALCAM) associated with retina development in owls, which was consistent with their respective diurnal/nocturnal predatory lifestyles. We identified five accipitrid-specific and two owl-specific missense mutations and most of which were predicted to affect the protein function by PolyPhen-2. Genome comparison showed the diversification of raptor olfactory receptor repertoires, which may reflect an important role of olfaction in their predatory lifestyle. Comparison of TAS2R gene (i.e. linked to tasting bitterness) number in birds with different dietary lifestyles suggested that dietary toxins were a major selective force shaping the diversity of TAS2R repertoires. Fewer TAS2R genes in raptors reflected their carnivorous diet, since animal tissues are less likely to contain toxins than plant material. Our data and findings provide valuable genomic resources for studying the genetic mechanisms of raptors' environmental adaptation, particularly olfaction, nocturnality and response to UV radiation.
Asunto(s)
Proteínas Aviares , Mutación Missense , Conducta Predatoria/fisiología , Estrigiformes/fisiología , Animales , Proteínas Aviares/genética , Proteínas Aviares/metabolismo , GenómicaRESUMEN
The monal genus (Lophophorus) is a branch of Phasianidae and its species inhabit the high-altitude mountains of the Qinghai-Tibet Plateau. The Chinese monal, L. lhuysii, is a threatened endemic bird of China that possesses high-altitude adaptability, diversity of plumage color and potentially low reproductive life history. This is the first study to describe the monal genome using next generation sequencing technology. The Chinese monal genome size is 1.01 Gb, with 16,940 protein-coding genes. Gene annotation yielded 100.93â¯Mb (9.97%) repeat elements, 785 ncRNA, 5,465,549 bp (0.54%) SSR and 15,550 (92%) genes in public databases. Compared to other birds and mammals, the genome evolution analysis showed numerous expanded gene families and positive selected genes involved in high-altitude adaptation, especially related to the adaptation of low temperature and hypoxia. Consequently, this gene data can be used to investigate the molecular evolution of high-altitude adaptation in future bird research. Our first published genome of the genus Lophophorus will be integral for the study of monal population genetic diversity and conservation, genomic evolution and Galliformes species differentiation in the Qinghai-Tibetan Plateau.
Asunto(s)
Galliformes/genética , Genoma , Animales , China , Evolución Molecular , Femenino , Galliformes/clasificación , Galliformes/crecimiento & desarrollo , Galliformes/metabolismo , Variación Genética , Genómica , Masculino , Anotación de Secuencia Molecular , FilogeniaRESUMEN
Background: The forest musk deer, Moschus berezovskii, is one of seven musk deer (Moschus spp.) and is distributed in Southwest China. Akin to other musk deer, the forest musk deer has been traditionally and is currently hunted for its musk (i.e., global perfume industry). Considerable hunting pressure and habitat loss have caused significant population declines. Consequently, the Chinese government commenced captive breeding programs for musk harvesting in the 1950s. However, the prevalence of fatal diseases is considerably restricting population increases. Disease severity and extent are exacerbated by inbreeding and genetic diversity declines in captive musk deer populations. It is essential that knowledge of captive and wild forest musk deer populations' immune system and genome be gained in order to improve their physical and genetic health. We have thus sequenced the whole genome of the forest musk deer, completed the genomic assembly and annotation, and performed preliminary bioinformatic analyses. Findings: A total of 407 Gb raw reads from whole-genome sequencing were generated using the Illumina HiSeq 4000 platform. The final genome assembly is around 2.72 Gb, with a contig N50 length of 22.6 kb and a scaffold N50 length of 2.85 Mb. We identified 24,352 genes and found that 42.05% of the genome is composed of repetitive elements. We also detected 1,236 olfactory receptor genes. The genome-wide phylogenetic tree indicated that the forest musk deer was within the order Artiodactyla, and it appeared as the sister clade of four members of Bovidae. In total, 576 genes were under positive selection in the forest musk deer lineage. Conclusions: We provide the first genome sequence and gene annotation for the forest musk deer. The availability of these resources will be very useful for the conservation and captive breeding of this endangered and economically important species and for reconstructing the evolutionary history of the order Artiodactyla.