Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 3356, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637502

RESUMEN

To realize economically feasible electrochemical CO2 conversion, achieving a high partial current density for value-added products is particularly vital. However, acceleration of the hydrogen evolution reaction due to cathode flooding in a high-current-density region makes this challenging. Herein, we find that partially ligand-derived Ag nanoparticles (Ag-NPs) could prevent electrolyte flooding while maintaining catalytic activity for CO2 electroreduction. This results in a high Faradaic efficiency for CO (>90%) and high partial current density (298.39 mA cm‒2), even under harsh stability test conditions (3.4 V). The suppressed splitting/detachment of Ag particles, due to the lipid ligand, enhance the uniform hydrophobicity retention of the Ag-NP electrode at high cathodic overpotentials and prevent flooding and current fluctuations. The mass transfer of gaseous CO2 is maintained in the catalytic region of several hundred nanometers, with the smooth formation of a triple phase boundary, which facilitate the occurrence of CO2RR instead of HER. We analyze catalyst degradation and cathode flooding during CO2 electrolysis through identical-location transmission electron microscopy and operando synchrotron-based X-ray computed tomography. This study develops an efficient strategy for designing active and durable electrocatalysts for CO2 electrolysis.

2.
Opt Express ; 30(12): 20659-20665, 2022 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-36224805

RESUMEN

We fabricated a 1 × 10 PbS QD photodiode array with multiple stacked QD layers with high-resolution patterning using a customized photolithographic process. The array showed the average responsivity of 5.54 × 10-3 A/W and 1.20 × 10-2 A/W at 0 V and -1 V under 1310- nm short-wavelength infrared (SWIR) illumination. The standard deviation of the pixel responsivity was under 10%, confirming the uniformity of the fabrication process. The response time was 2.2 ± 0.13 ms, and the bandwidth was 159.1 Hz. A prototype 1310-nm SWIR imager demonstrated that the QD photodiode-based SWIR image sensor is a cost-effective and practical alternative for III-V SWIR image sensors.

3.
Adv Mater ; 33(51): e2105485, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34636092

RESUMEN

Human behavior (e.g., the response to any incoming information) has very complex forms and is based on the response to consecutive external stimuli entering varied sensory receptors. Sensory adaptation is an elementary form of the sensory nervous system known to filter out irrelevant information for efficient information transfer from consecutive stimuli. As bioinspired neuromorphic electronic system is developed, the functionality of organs shall be emulated at a higher level than the cell. Because it is important for electronic devices to possess sensory adaptation in spiking neural networks, the authors demonstrate a dynamic, real-time, photoadaptation process to optical irradiation when repeated light stimuli are presented to the artificial photoreceptor. The filtered electrical signal generated by the light and the adapting signal produces a specific range of postsynaptic states through the neurotransistor, demonstrating changes in the response according to the environment, as normally perceived by the human brain. This successfully demonstrates plausible biological sensory adaptation. Further, the ability of this circuit design to accommodate changes in the intensity of bright or dark light by adjusting the sensitivity of the artificial photoreceptor is demonstrated. Thus, the proposed artificial photoreceptor circuits have the potential to advance neuromorphic device technology by providing sensory adaptation capabilities.

4.
Plant Cell Rep ; 39(4): 473-487, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32016506

RESUMEN

KEY MESSAGE: The non-intrinsic ABC proteins ABCI20 and ABCI21 are induced by light under HY5 regulation, localize to the ER, and ameliorate cytokinin-driven growth inhibition in young Arabidopsis thaliana seedlings. The plant ATP-binding cassette (ABC) I subfamily (ABCIs) comprises heterogeneous proteins containing any of the domains found in other ABC proteins. Some ABCIs are known to function in basic metabolism and stress responses, but many remain functionally uncharacterized. ABCI19, ABCI20, and ABCI21 of Arabidopsis thaliana cluster together in a phylogenetic tree, and are suggested to be targets of the transcription factor ELONGATED HYPOCOTYL 5 (HY5). Here, we reveal that these three ABCIs are involved in modulating cytokinin responses during early seedling development. The ABCI19, ABCI20 and ABCI21 promoters harbor HY5-binding motifs, and ABCI20 and ABCI21 expression was induced by light in a HY5-dependent manner. abci19 abci20 abci21 triple and abci20 abci21 double knockout mutants were hypersensitive to cytokinin in seedling growth retardation assays, but did not show phenotypic differences from the wild type in either control medium or auxin-, ABA-, GA-, ACC- or BR-containing media. ABCI19, ABCI20, and ABCI21 were expressed in young seedlings and the three proteins interacted with each other, forming a large protein complex at the endoplasmic reticulum (ER) membrane. These results suggest that ABCI19, ABCI20, and ABCI21 fine-tune the cytokinin response at the ER under the control of HY5 at the young seedling stage.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Citocininas/metabolismo , Retículo Endoplásmico/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Secuencias de Aminoácidos , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Citocininas/genética , Retículo Endoplásmico/efectos de la radiación , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Técnicas de Inactivación de Genes , Luz , Filogenia , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas , Unión Proteica , Plantones/genética , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Plantones/efectos de la radiación
5.
Plant Cell ; 26(1): 310-24, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24474628

RESUMEN

The pollen coat protects pollen grains from harmful environmental stresses such as drought and cold. Many compounds in the pollen coat are synthesized in the tapetum. However, the pathway by which they are transferred to the pollen surface remains obscure. We found that two Arabidopsis thaliana ATP binding cassette transporters, ABCG9 and ABCG31, were highly expressed in the tapetum and are involved in pollen coat deposition. Upon exposure to dry air, many abcg9 abcg31 pollen grains shriveled up and collapsed, and this phenotype was restored by complementation with ABCG9pro:GFP:ABCG9. GFP-tagged ABCG9 or ABCG31 localized to the plasma membrane. Electron microscopy revealed that the mutant pollen coat resembled the immature coat of the wild type, which contained many electron-lucent structures. Steryl glycosides were reduced to about half of wild-type levels in the abcg9 abcg31 pollen, but no differences in free sterols or steryl esters were observed. A mutant deficient in steryl glycoside biosynthesis, ugt80A2 ugt80B1, exhibited a similar phenotype. Together, these results indicate that steryl glycosides are critical for pollen fitness, by supporting pollen coat maturation, and that ABCG9 and ABCG31 contribute to the accumulation of this sterol on the surface of pollen.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/fisiología , Proteínas de Arabidopsis/fisiología , Arabidopsis/genética , Glicósidos/metabolismo , Polen/fisiología , Transportador de Casetes de Unión a ATP, Subfamilia G , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo , Flores/metabolismo , Polen/metabolismo
6.
Plant J ; 65(2): 181-93, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21223384

RESUMEN

The exine of the pollen wall shows an intricate pattern, primarily comprising sporopollenin, a polymer of fatty acids and phenolic compounds. A series of enzymes synthesize sporopollenin precursors in tapetal cells, and the precursors are transported from the tapetum to the pollen surface. However, the mechanisms underlying the transport of sporopollenin precursors remain elusive. Here, we provide evidence that strongly suggests that the Arabidopsis ABC transporter ABCG26/WBC27 is involved in the transport of sporopollenin precursors. Two independent mutations at ABCG26 coding region caused drastic decrease in seed production. This defect was complemented by expression of ABCG26 driven by its native promoter. The severely reduced fertility of the abcg26 mutants was caused by a failure to produce mature pollen, observed initially as a defect in pollen-wall development. The reticulate pattern of the exine of wild-type microspores was absent in abcg26 microspores at the vacuolate stage, and the vast majority of the mutant pollen degenerated thereafter. ABCG26 was expressed specifically in tapetal cells at the early vacuolate stage of pollen development. It showed high co-expression with genes encoding enzymes required for sporopollenin precursor synthesis, i.e. CYP704B1, ACOS5, MS2 and CYP703A2. Similar to two other mutants with defects in pollen-wall deposition, abcg26 tapetal cells accumulated numerous vesicles and granules. Taken together, these results suggest that ABCG26 plays a crucial role in the transfer of sporopollenin lipid precursors from tapetal cells to anther locules, facilitating exine formation on the pollen surface.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Biopolímeros/metabolismo , Carotenoides/metabolismo , Polen/crecimiento & desarrollo , Transportador de Casetes de Unión a ATP, Subfamilia G , Transportadoras de Casetes de Unión a ATP/genética , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Transporte Biológico/genética , Membrana Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , Prueba de Complementación Genética , Infertilidad Vegetal , Polen/genética , Polen/metabolismo , Polen/ultraestructura , ARN de Planta/genética , Eliminación de Secuencia
7.
Physiol Plant ; 139(2): 170-80, 2010 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-20088904

RESUMEN

Drought and salt are major abiotic stresses that adversely affect crop productivity. Thus, identification of factors that confer resistance to these stresses would pave way to increasing agricultural productivity. When grown on soil in green house longer than 5 weeks, transgenic Arabidopsis plants that overexpress an ATP-binding cassette (ABC) transporter, AtABCG36/AtPDR8, produced higher shoot biomass and less chlorotic leaves than the wild-type. We investigated whether the improved growth of AtABCG36-overexpressing plants was due to their improved resistance to abiotic stresses, and found that AtABCG36-overexpressing plants were more resistant to drought and salt stress and grew to higher shoot fresh weight (FW) than the wild-type. On the contrary, T-DNA insertional knockout lines were more sensitive to drought stress than wild-type and were reduced in shoot FW. To understand the mechanism of enhanced salt and drought resistance of the AtABCG36 overexpressing plants, we measured sodium contents and found that AtABCG36 overexpressing plants were lower in sodium content than the wild-type. Our data suggest that AtABCG36 contributes to drought and salt resistance in Arabidopsis by a mechanism that includes reduction of sodium content in plants.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Sequías , Cloruro de Sodio/farmacología , Transportadoras de Casetes de Unión a ATP/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , ADN Bacteriano/genética , Técnicas de Inactivación de Genes , Mutagénesis Insercional , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Plantas Modificadas Genéticamente/fisiología , Plantas Tolerantes a la Sal/genética , Plantas Tolerantes a la Sal/metabolismo , Plantas Tolerantes a la Sal/fisiología , Estrés Fisiológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...