Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(21)2022 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-36361629

RESUMEN

Retinoic acid (RA) plays important roles in various biological processes in animals. RA signaling is mediated by two types of nuclear receptors, namely retinoic acid receptor (RAR) and retinoid x receptor (RXR), which regulate gene expression by binding to retinoic acid response elements (RAREs) in the promoters of target genes. Here, we explored the effect of all-trans retinoic acid (ATRA) on the Pacific oyster Crassostera gigas at the transcriptome level. A total of 586 differentially expressed genes (DEGs) were identified in C. gigas upon ATRA treatment, with 309 upregulated and 277 downregulated genes. Bioinformatic analysis revealed that ATRA affects the development, metabolism, reproduction, and immunity of C. gigas. Four tyrosinase genes, including Tyr-6 (LOC105331209), Tyr-9 (LOC105346503), Tyr-20 (LOC105330910), and Tyr-12 (LOC105320007), were upregulated by ATRA according to the transcriptome data and these results were verified by real-time quantitative polymerase chain reaction (RT-qPCR) analysis. In addition, increased expression of Tyr (a melanin-related TYR gene in C. gigas) and Tyr-2 were detected after ATRA treatment. The yeast one-hybrid assay revealed the DNA-binding activity of the RA receptors CgRAR and CgRXR, and the interaction of CgRAR with RARE present in the Tyr-2 promoter. These results provide evidence for the further studies on the role of ATRA and the mechanism of RA receptors in mollusks.


Asunto(s)
Crassostrea , Tretinoina , Animales , Tretinoina/farmacología , Tretinoina/metabolismo , Monofenol Monooxigenasa/genética , Monofenol Monooxigenasa/metabolismo , Crassostrea/genética , Crassostrea/metabolismo , Receptores de Ácido Retinoico/metabolismo , Receptores X Retinoide/genética , Receptores X Retinoide/metabolismo , Expresión Génica , Regulación de la Expresión Génica
2.
Front Physiol ; 12: 666842, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33897474

RESUMEN

Retinoic acid (RA) signaling pathways mediated by RA receptors (RARs) are essential for many physiological processes such as organ development, regeneration, and differentiation in animals. Recent studies reveal that RARs identified in several mollusks, including Pacific oyster Crassostrea gigas, have a different function mechanism compared with that in chordates. In this report, we identified the molecular characteristics of CgRAR to further explore the mechanism of RAR in mollusks. RT-qPCR analysis shows that CgRAR has a higher expression level in the hemocytes and gonads, indicating that CgRAR may play roles in the processes of development and metabolism. The mRNA expression level of both CgRAR and CgRXR was analyzed by RT-qPCR after injection with RA. The elevated expression of CgRAR and CgRXR was detected upon all-trans-RA (ATRA) exposure. Finally, according to the results of Yeast Two-Hybrid assay and co-immunoprecipitation analysis, CgRAR and CgRXR can interact with each other through the C-terminal region. Taken together, our results suggest that CgRAR shows a higher expression level in gonads and hemocytes. ATRA exposure up-regulates the expression of CgRAR and CgRXR. Besides, CgRAR can interact with CgRXR to form a heterodimer complex.

3.
PLoS One ; 13(9): e0203920, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30216363

RESUMEN

Clarification of postmortem metabolite changes can help characterize the process of biological degradation and facilitate investigations of forensic casework, especially in the estimation of postmortem interval (PMI). Metabolomics can provide information on the molecular profiles of tissues, which can aid in investigating postmortem metabolite changes. In this study, liquid chromatography-mass spectrometric (LC-MS) analysis was performed to identify the metabolic profiles of rat femoral muscle at ten periods of time after death within 168 h. The results obtained by reversed-phase liquid chromatography (RPLC)- and hydrophilic interaction liquid chromatography (HILIC)- electrospray ionization (ESI±) have revealed more than 16,000 features from all four datasets. Furthermore, 915 of these features were identified using an in-house database. Principal component analysis (PCA) demonstrated the time-specific features of molecular profiling at each period of time after death. Moreover, results from partial least squares projection to latent structures-discriminant analysis (PLS-DA) disclosed a strong association of metabolic alterations of at least 59 metabolites with the time since death, especially within 48 h after death, which expounds these metabolites as potential indicators in PMI estimation. Altogether, our results illustrate the potentiality of metabolic profiling in the evaluation of PMI and provide candidate metabolite markers with strong correlation with time since death for forensic purpose.


Asunto(s)
Metaboloma , Cambios Post Mortem , Músculo Cuádriceps/metabolismo , Animales , Biomarcadores/metabolismo , Cromatografía de Fase Inversa , Muerte , Interacciones Hidrofóbicas e Hidrofílicas , Análisis de los Mínimos Cuadrados , Masculino , Análisis de Componente Principal , Ratas , Ratas Sprague-Dawley , Espectrometría de Masa por Ionización de Electrospray , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...