Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Carbohydr Polym ; 345: 122546, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39227091

RESUMEN

Herein, dexamethasone (DEX) nanocrystalline suspension (NS)-embedded hydrogel (NS-G) was constructed using a hydroxypropyl methylcellulose (HPMC) polymer to enhance cochlear delivery and attenuate hearing loss following intratympanic (IT) injection. Hydrophobic steroidal nanocrystals were prepared using a bead milling technique and incorporated into a polysaccharide hydrogel. The NS-G system with HPMC (average molecular weight, 86,000 g/mol; 15 mg/mL) was characterized as follows: rod-shaped drug crystalline; particle size <300 nm; and constant complex viscosity ≤1.17 Pa·s. Pulverization of the drug particles into submicron diameters enhanced drug dissolution, while the HPMC matrix increased the residence time in the middle ear cavity, exhibiting a controlled release profile. The IT NS-G system elicited markedly enhanced and prolonged drug delivery (> 9 h) to the cochlear tissue compared with that of DEX sodium phosphate (DEX-SP), a water-soluble prodrug. In mice with kanamycin- and furosemide-induced ototoxicity, NS-G markedly enhanced hearing preservation across all frequencies (8-32 kHz), as revealed by an auditory brainstem response test, compared with both saline and DEX-SP. Moreover, treatment with NS-G showed enhanced anti-inflammatory effects, as evidenced by decreased levels of inflammation-related cytokines. Therefore, the IT administration of DEX NS-loaded HPMC hydrogels is a promising strategy for treating hearing loss.


Asunto(s)
Cóclea , Dexametasona , Pérdida Auditiva , Hidrogeles , Derivados de la Hipromelosa , Inyección Intratimpánica , Nanopartículas , Dexametasona/química , Dexametasona/administración & dosificación , Animales , Derivados de la Hipromelosa/química , Hidrogeles/química , Nanopartículas/química , Ratones , Cóclea/efectos de los fármacos , Cóclea/patología , Pérdida Auditiva/tratamiento farmacológico , Pérdida Auditiva/inducido químicamente , Liberación de Fármacos , Masculino , Sistemas de Liberación de Medicamentos/métodos
2.
PLoS One ; 19(9): e0309802, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39240870

RESUMEN

Donepezil (DPZ), a piperidine-based reversible cholinesterase inhibitor, finds extensive use in treating Alzheimer's disease (AD). Originally designed as an oral formulation, DPZ encounters drawbacks such as a brief duration of action and reduced treatment effectiveness in elderly patients with memory impairment or difficulty swallowing medications. To address these issues and improve patient compliance, researchers are actively exploring alternative DPZ formulations. Consequently, reliable methods are necessary to quantitate DPZ in biological samples for in vivo assessment. Therefore, we propose an efficient, sensitive, wide-dynamic, and cost-effective method for quantitating DPZ in rat plasma. Our method employs liquid-liquid extraction (LLE) followed by liquid chromatography and tandem mass spectrometry, enabling in vivo evaluation of novel DPZ formulations. Notably, our method requires only 20 µL of rat plasma and employs icopezil as the internal standard-a cost-effective compound with chemical similarity to DPZ. We meticulously optimized LLE conditions, taking into account factor interactions through design of experiments (DOE). Our rapid and straightforward extraction and purification involved using 500 µL of pure methyl tert-butyl ether to extract DPZ from the sample within five minutes. The dynamic range of the method extends from 0.5 ng/mL to 1,000 ng/mL, demonstrating excellent sensitivity and suitability for pharmacokinetic studies across diverse DPZ formulations. Following the FDA guidelines, we rigorously validated the developed method, evaluating selectivity, linearity (with a coefficient of determination ≥0.9999), accuracy (ranging from 96.0% to 109.6%), precision (≤13.9%), matrix effect (92.2% to 103.8%), recovery (98.5% to 106.8%), the lower limit of quantitation (0.5 ng/mL), and stability. Finally, we effectively employed the validated method for the long-term pharmacokinetic assessment of a DPZ formulation. We expect that this approach will make a substantial contribution to the advancement of new DPZ formulations, ultimately benefiting individuals afflicted by AD.


Asunto(s)
Donepezilo , Extracción Líquido-Líquido , Piperidinas , Espectrometría de Masas en Tándem , Donepezilo/sangre , Donepezilo/farmacocinética , Animales , Espectrometría de Masas en Tándem/métodos , Extracción Líquido-Líquido/métodos , Ratas , Cromatografía Liquida/métodos , Piperidinas/sangre , Piperidinas/farmacocinética , Piperidinas/química , Inhibidores de la Colinesterasa/sangre , Inhibidores de la Colinesterasa/farmacocinética , Indanos/sangre , Indanos/farmacocinética , Masculino , Reproducibilidad de los Resultados , Ratas Sprague-Dawley , Cromatografía Líquida con Espectrometría de Masas
3.
Int J Biol Macromol ; 277(Pt 2): 134246, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39098461

RESUMEN

A novel nanoparticle screening technique was established to mostly enhance the aqueous solubility and oral bioavailability of aceclofenac using nanoparticle systems. Among the polymers investigated, sodium carboxymethylcellulose (Na-CMC) showed the greatest increase in drug solubility. Utilizing spray-drying technique, the solvent-evaporated solid dispersion (SESD), surface-attached solid dispersion (SASD), and solvent-wetted solid dispersion (SWSD) were prepared using aceclofenac and Na-CMC at a weight ratio of 1:1 in 50 % ethanol, distilled water, and ethanol, respectively. Using Na-CMC as a solid carrier, an aceclofenac-loaded liquid self-emulsifying drug delivery system was spray-dried and fluid-bed granulated together with microcrystalline cellulose, producing a solid self-nanoemulsifying drug delivery system (SNEDDS) and solid self-nanoemulsifying granule system (SNEGS), respectively. Their physicochemical properties and preclinical assessments in rats were performed. All nanoparticles exhibited very different properties, including morphology, crystallinity, and size. As a result, they significantly enhanced the solubility, dissolution, and oral bioavailability in the following order: SNEDDS ≥ SNEGS > SESD ≥ SASD ≥ SWSD. Based on our screening technique, the SNEDDS was selected as the optimal nanoparticle with the highest bioavailability of aceclofenac. Thus, our nanoparticle screening technique should be an excellent guideline for solubilization research to improve the solubility and bioavailability of many poorly water-soluble bioactive materials.


Asunto(s)
Disponibilidad Biológica , Carboximetilcelulosa de Sodio , Diclofenaco , Nanopartículas , Solubilidad , Agua , Diclofenaco/farmacocinética , Diclofenaco/análogos & derivados , Diclofenaco/química , Diclofenaco/administración & dosificación , Carboximetilcelulosa de Sodio/química , Nanopartículas/química , Animales , Ratas , Administración Oral , Agua/química , Masculino , Emulsiones/química , Portadores de Fármacos/química , Tamaño de la Partícula , Ratas Sprague-Dawley
4.
J Control Release ; 374: 590-605, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39208936

RESUMEN

Herein, we reported novel docetaxel-decorated solid lipid nanoparticle (DCT-SLN)-loaded dual thermoreversible system (DCT-DRTS) for intramuscular administration with reduced burst effect, sustained release and improved antitumor efficacy. The optimized DCT-DRTs was subjected to in-vitro and in-vivo analyses. Antitumor evaluation of the DCT-DRTS was executed and compared with DCT-hydrogel, and DCT-suspension trailed by the histopathological and immune-histochemical analyses. The DCT-SLN gave a mean particle size of 157 nm and entrapment efficiency of 93 %. It was a solid at room temperature, and changed to liquid at physiological temperature due to its melting point of about 32 °C. Unlikely, poloxamer mixture remained liquefied at 25-27 °C, however converted to gel at physiological temperature. This behavior demonstrated opposed reversible property of the DCT-SLN and poloxamer hydrogel in DCT-DRTS system, making it ideal for intramuscular administration and quick gelation inside the body. The DCT-DRTS sustained the drugs release and unlike DCT-hydrogel, the preliminary plasma concentration of DCT-DRTS was significantly reduced, overcoming the burst release. A meaningfully enhanced antitumor efficacy and improved survival rate was observed from DCT-DRTS in tumor cell xenograft athymic nude mice. Additionally, increased apoptotic and reduced proliferation markers were observed in DCT-DRTS treated tumor masses. It was concluded that DCT-DRTS may be a suitable choice for intramuscular administration of DCT with sustained release, improved bioavailability, reduced toxicity and enhanced antitumor effects.


Asunto(s)
Antineoplásicos , Preparaciones de Acción Retardada , Docetaxel , Hidrogeles , Nanopartículas , Animales , Hidrogeles/química , Hidrogeles/administración & dosificación , Antineoplásicos/administración & dosificación , Antineoplásicos/farmacocinética , Humanos , Inyecciones Intramusculares , Docetaxel/administración & dosificación , Docetaxel/farmacocinética , Nanopartículas/química , Nanopartículas/administración & dosificación , Preparaciones de Acción Retardada/química , Ratones Endogámicos BALB C , Línea Celular Tumoral , Liberación de Fármacos , Temperatura , Ratones Desnudos , Poloxámero/química , Ratones , Sistemas de Liberación de Medicamentos , Femenino , Lípidos/química , Lípidos/administración & dosificación , Masculino , Portadores de Fármacos/química , Neoplasias/tratamiento farmacológico , Taxoides/administración & dosificación , Taxoides/farmacocinética , Taxoides/química , Liposomas
5.
Colloids Surf B Biointerfaces ; 241: 114044, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38964274

RESUMEN

In this study, we aimed to develop a solid self-nanoemulsifying drug delivery system (S-SNEDDS) and a solid self-nanoemulsifying granule system (S-SNEGS) to enhance the solubility and oral bioavailability of celecoxib. This process involved the preparation of a liquid SNEDDS (L-SNEDDS) and its subsequent solidification into a S-SNEDDS and a S-SNEGS. The L-SNEDDS consisted of celecoxib (drug), Captex® 355 (Captex; oil), Tween® 80 (Tween 80; surfactant) and D-α-Tocopherol polyethylene glycol 1000 succinate (TPGS; cosurfactant) in a weight ratio of 3.5:25:60:15 to produce the smallest nanoemulsion droplet size. The S-SNEDDS and S-SNEGS were prepared with L-SNEDDS/Ca-silicate/Avicel PH 101 in a weight ratio of 103.5:50:0 using a spray dryer and 103.5:50:100 using a fluid bed granulator, respectively. We compared the two novel developed systems and celecoxib powder based on their solubility, dissolution rate, physicochemical properties, flow properties and oral bioavailability in rats. S-SNEGS showed a significant improvement in solubility and dissolution rate compared to S-SNEDDS and celecoxib powder. Both systems had been converted from crystalline drug to amorphous form. Furthermore, S-SNEGS exhibited a significantly reduced angle of repose, compressibility index and Hausner ratio than S-SNEDDS, suggesting that S-SNEGS was significantly superior in flow properties. Compared to S-SNEDDS and celecoxib powder, S-SNEGS increased the oral bioavailability (AUC value) in rats by 1.3 and 4.5-fold, respectively. Therefore, S-SNEGS wolud be recommended as a solid self-nanoemulsifying system suitable for poorly water-soluble celecoxib.


Asunto(s)
Disponibilidad Biológica , Celecoxib , Sistemas de Liberación de Medicamentos , Emulsiones , Ratas Sprague-Dawley , Solubilidad , Agua , Celecoxib/química , Celecoxib/farmacocinética , Celecoxib/administración & dosificación , Animales , Emulsiones/química , Administración Oral , Masculino , Agua/química , Ratas , Tamaño de la Partícula , Tensoactivos/química , Nanopartículas/química , Polisorbatos/química
6.
Materials (Basel) ; 17(12)2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38930272

RESUMEN

Electrospun nanofibers have been used as wound dressings to protect skin from infection and promote wound healing. In this study, we developed polyvinylpyrrolidone (PVP)/silicon dioxide (SD) composite nanofibers for the delivery of probiotic Saccharomyces cerevisiae (SC), which potentially aids in wound healing. PVP/SD composite nanofibers were optimized through electrospinning, and bead-free nanofibers with an average diameter of 624.7 ± 99.6 nm were fabricated. Next, SC, a wound-healing material, was loaded onto the PVP/SD composite nanofibers. SC was encapsulated in nanofibers, and nanofibers were prepared using SC, PVP, SD, water, and ethanol in a ratio of 3:4:0.1:4.8:1.2. The formation of smooth nanofibers with protrusions around SC was confirmed using SEM. Nanofiber dressing properties were physicochemically and mechanically characterized by evaluating SEM, DSC, XRD, and FTIR images, tensile strength, and elongation at break. Additionally, a release test of active substances was performed. The absence of interactions between SC, PVP, and SD was confirmed through physicochemical evaluation, and SEM images showed that the nanofiber dressing contained SC and had a porous structure. It also showed a 100% release of SC within 30 min. Overall, our study showed that SC-loaded PVP/SD composite nanofibers prepared using the electrospinning method are promising wound dressings.

7.
Carbohydr Polym ; 338: 122197, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38763711

RESUMEN

Transdermal rotigotine (RTG) therapy is prescribed to manage Parkinson's disease (Neupro® patch). However, its use is suffered from application site reactions. Herein, drug nanocrystalline suspension (NS)-loaded hydrogel (NS-HG) employing polysaccharides simultaneously as suspending agent and hydrogel matrix was constructed for transdermal delivery, with alleviated skin irritation. RTG-loaded NS-HG was prepared using a bead-milling technique, employing sodium carboxylmethyl cellulose (Na.CMC) as nano-suspending agent (molecular weight 90,000 g/mol) and hydrogel matrix (700,000 g/mol), respectively. NS-HG was embodied as follows: drug loading: ≤100 mg/mL; shape: rectangular crystalline; crystal size: <286.7 nm; zeta potential: -61 mV; viscosity: <2.16 Pa·s; and dissolution rate: >90 % within 15 min. Nuclear magnetic resonance analysis revealed that the anionic polymers bind to RTG nanocrystals via charge interaction, affording uniform dispersion in the matrix. Rodent transdermal absorption of RTG from NS-HG was comparable to that from microemulsions, and proportional to drug loading. Moreover, NS-HG was skin-friendly; erythema and epidermal swelling were absent after repeated application. Further, NS-HG was chemically stable; >95 % of the drug was preserved up to 4 weeks under long term (25 °C/RH60%), accelerated (40 °C/RH75%), and stress (50 °C) storage conditions. Therefore, this novel cellulose derivative-based nanoformulation presents a promising approach for effective transdermal RTG delivery with improved tolerability.


Asunto(s)
Administración Cutánea , Carboximetilcelulosa de Sodio , Hidrogeles , Nanopartículas , Piel , Tetrahidronaftalenos , Tiofenos , Tiofenos/química , Tiofenos/administración & dosificación , Animales , Hidrogeles/química , Nanopartículas/química , Carboximetilcelulosa de Sodio/química , Tetrahidronaftalenos/química , Tetrahidronaftalenos/administración & dosificación , Piel/efectos de los fármacos , Piel/metabolismo , Masculino , Absorción Cutánea/efectos de los fármacos , Ratas , Ratones , Portadores de Fármacos/química , Ratas Sprague-Dawley , Liberación de Fármacos
8.
ACS Nano ; 18(11): 8392-8410, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38450656

RESUMEN

Therapeutic antibodies that block vascular endothelial growth factor (VEGF) show clinical benefits in treating nonsmall cell lung cancers (NSCLCs) by inhibiting tumor angiogenesis. Nonetheless, the therapeutic effects of systemically administered anti-VEGF antibodies are often hindered in NSCLCs because of their limited distribution in the lungs and their adverse effects on normal tissues. These challenges can be overcome by delivering therapeutic antibodies in their mRNA form to lung endothelial cells, a primary target of VEGF-mediated pulmonary angiogenesis, to suppress the NSCLCs. In this study, we synthesized derivatives of poly(ß-amino esters) (PBAEs) and prepared nanoparticles to encapsulate the synthetic mRNA encoding bevacizumab, an anti-VEGF antibody used in the clinic. Optimization of nanoparticle formulations resulted in a selective lung transfection after intravenous administration. Notably, the optimized PBAE nanoparticles were distributed in lung endothelial cells, resulting in the secretion of bevacizumab. We analyzed the protein corona on the lung- and spleen-targeting nanoparticles using proteomics and found distinctive features potentially contributing to their organ-selectivity. Lastly, bevacizumab mRNA delivered by the lung-targeting PBAE nanoparticles more significantly inhibited tumor proliferation and angiogenesis than recombinant bevacizumab protein in orthotopic NSCLC mouse models, supporting the therapeutic potential of bevacizumab mRNA therapy and its selective delivery through lung-targeting nanoparticles. Our proof-of-principle results highlight the clinical benefits of nanoparticle-mediated mRNA therapy in anticancer antibody treatment in preclinical models.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Animales , Ratones , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Bevacizumab/farmacología , Bevacizumab/uso terapéutico , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Células Endoteliales/metabolismo , Nanomedicina , ARN Mensajero/genética , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Factores de Crecimiento Endotelial Vascular , Polímeros/uso terapéutico , Pulmón/metabolismo , Inhibidores de la Angiogénesis/farmacología , Inhibidores de la Angiogénesis/uso terapéutico
9.
Drug Deliv Transl Res ; 14(3): 655-664, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37667087

RESUMEN

This study compares rivaroxaban-loaded polymeric microsphere systems with three types of surface microstructure. Three types of polymeric microspheres loaded with rivaroxaban were fabricated using a spray-drying technique: solvent-evaporated, surface-attached, and solvent-wet microspheres, depending on whether the drug and additives used are soluble in the solvent. The solvent-evaporated and surface-attached microspheres had a rivaroxaban/polyvinylpyrrolidone/sodium lauryl sulfate (SLS) weight ratio of 1/0.25/2.2, and the solvent-wetted microspheres contained rivaroxaban/polyvinyl alcohol/SLS in equal weight ratio (1/0.25/2). The physicochemical properties of the microspheres were evaluated using scanning electron microscopy, powder X-ray diffraction, differential scanning calorimetry, and particle size distribution analysis. The aqueous solubility and dissolution rate of rivaroxaban in the three types of microspheres were compared to those of the drug powder. The solvent-evaporated, surface-attached, and solvent-wetted microspheres were approximately 208, 140, and 172 times as soluble as the drug powder, and the final dissolution rate (120 min) was approximately 5, 2, and 4 times that of the drug powder, respectively. In addition, the oral bioavailability increased by approximately 2, 1.3, and 1.6 times compared to that of the drug powder (area under drug concentration-time curve: 2101.3 ± 314.8, 1325.2 ± 333.3, and 1664.0 ± 102.6 h·ng/mL, respectively). Finally, the solvent-evaporated microspheres showed the greatest improvement (solvent evaporating microspheres > solvent wetted microspheres > surface-attached microspheres ≥ drug powder). Therefore, the solvent-evaporated microspheres may represent a novel oral dosage form that improves the oral bioavailability of rivaroxaban, a poorly soluble drug.


Asunto(s)
Rivaroxabán , Microesferas , Disponibilidad Biológica , Polvos , Solventes/química , Solubilidad , Difracción de Rayos X , Microscopía Electrónica de Rastreo , Tamaño de la Partícula , Rastreo Diferencial de Calorimetría
10.
Int J Pharm ; 648: 123578, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37931729

RESUMEN

The purpose of this study was to investigate the impact of carrier hydrophilicity on solid self nano-emulsifying drug delivery system (SNEDDS) and self nano-emulsifying granule system (SEGS). The mesoporous calcium silicate (Ca-silicate) and hydroxypropyl-ß-cyclodextrin (HP-ß-CD) were utilised as hydrophobic carrier and hydrophilic carrier, respectively. The liquid SNEDDS formulation, composed of Tween80/Kollipohr EL/corn oil (35/50/15%) with 31% (w/w) dexibuprofen, was spray-dried and fluid-bed granulated together with Avicel using Ca-silicate or HP- ß-CD as a solid carrier, producing four different solid SNEDDS and SEGS formulations. Unlike the Ca-silicate-based systems, spherical shape and aggregated particles were shown in HP-ß-CD-based solid SNEDDS and SEGS, respectively. Molecular interaction was detected between Ca-silicate and the drug; though, none was shown between HP-ß-CD and the drug. Each system prepared with either carrier gave no significant differences in micromeritic properties, crystallinity, droplet morphology, size, dissolution and oral bioavailability in rats. However, the HP-ß-CD-based system more significantly improved the drug solubility than did the Ca-silicate-based system. Therefore, both carriers hardly affected the properties of both solid SNEDDS and SEGS; though, there were differences in the aspect of appearance, molecular interaction and solubility.


Asunto(s)
Sistemas de Liberación de Medicamentos , Nanopartículas , Ratas , Animales , Sistemas de Liberación de Medicamentos/métodos , Sistema de Administración de Fármacos con Nanopartículas , 2-Hidroxipropil-beta-Ciclodextrina , Solubilidad , Silicatos , Interacciones Hidrofóbicas e Hidrofílicas , Emulsiones/química , Disponibilidad Biológica , Administración Oral , Tamaño de la Partícula , Nanopartículas/química
11.
Int J Mol Sci ; 24(20)2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37895073

RESUMEN

In this study, we developed a tamsulosin pellet-loaded orally disintegrating tablet (ODT) that is bioequivalent to commercially available products and has improved patient compliance using microcrystalline cellulose (MCC) and mannitol. Utilizing the fluid bed technique, the drug, sustained release (SR) layer, and enteric layer were sequentially prepared by coating MCC pellets with the drug, HPMC, Kollicoat, and a mixture of Eudragit L and Eudragit NE, respectively, resulting in the production of tamsulosin pellets. The tamsulosin pellet, composed of the MCC pellet, drug layer, SR layer, and enteric layer at a weight ratio of 20:0.8:4.95:6.41, was selected because its dissolution was equivalent to that of the commercial capsule. Tamsulosin pellet-loaded ODTs were prepared using tamsulosin pellets and various co-processed excipients. The tamsulosin pellet-loaded ODT composed of tamsulosin pellets, mannitol-MCC mixture, silicon dioxide, and magnesium stearate at a weight ratio of 32.16:161.84:4.0:2.0 gave the best protective effect on the coating process and a dissolution profile similar to that of the commercial capsule. Finally, no significant differences in beagle dogs were observed in pharmacokinetic parameters, suggesting that they were bioequivalent. In conclusion, tamsulosin pellet-loaded ODTs could be a potential alternative to commercial capsules, improving patient compliance.


Asunto(s)
Excipientes , Manitol , Humanos , Perros , Animales , Tamsulosina , Preparaciones de Acción Retardada , Solubilidad , Comprimidos/química , Excipientes/química
12.
Bioeng Transl Med ; 8(5): e10392, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37693065

RESUMEN

Induction of potent immune responses toward tumors remains challenging in cancer immunotherapy, in which it only showed benefits in a minority of patients with "hot" tumors, which possess pre-existing effector immune cells within the tumor. In this study, we proposed a nanoparticle-based strategy to fire up the "cold" tumor by upregulating the components associated with T and NK cell recruitment and activation and suppressing TGF-ß1 secretion by tumor cells. Specifically, LTX-315, a first-in-class oncolytic cationic peptide, and TGF-ß1 siRNA were co-entrapped in a polymer-lipid hybrid nanoparticle comprising PLGA, DSPE-mPEG, and DSPE-PEG-conjugated with cRGD peptide (LTX/siR-NPs). The LTX/siR-NPs showed significant inhibition of TGF-ß1 expression, induction of type I interferon release, and triggering immunogenic cell death (ICD) in treated tumor cells, indicated via the increased levels of danger molecules, an in vitro setting. The in vivo data showed that the LTX/siR-NPs could effectively protect the LTX-315 peptide from degradation in serum, which highly accumulated in tumor tissue. Consequently, the LTX/siR-NPs robustly suppressed TGF-ß1 production by tumor cells and created an immunologically active tumor with high infiltration of antitumor effector immune cells. As a result, the combination of LTX/siR-NP treatment with NKG2A checkpoint inhibitor therapy remarkably increased numbers of CD8+NKG2D+ and NK1.1+NKG2D+ within tumor masses, and importantly, inhibited the tumor growth and prolonged survival rate of treated mice. Taken together, this study suggests the potential of the LTX/siR-NPs for inflaming the "cold" tumor for potentiating the efficacy of cancer immunotherapy.

13.
J Control Release ; 361: 443-454, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37558053

RESUMEN

Triple-negative breast cancer (TNBC) is highly aggressive and has no standard treatment. Although being considered as an alternative to conventional treatments for TNBC, immunotherapy has to deal with many challenges that hinder its efficacy, particularly the poor immunogenic condition of the tumor microenvironment (TME). Herein, we designed a liposomal nanoparticle (LN) platform that delivers simultaneously toll-like receptor 7 (imiquimod, IQ) and toll-like receptor 3 (poly(I:C), IC) agonists to take advantage of the different toll-like receptor (TLR) signaling pathways, which enhances the condition of TME from a "cold" to a "hot" immunogenic state. The optimized IQ/IC-loaded LN (IQ/IC-LN) was effectively internalized by cancer cells, macrophages, and dendritic cells, followed by the release of the delivered drugs and subsequent stimulation of the TLR3 and TLR7 signaling pathways. This stimulation encouraged the secretion of type I interferon (IFN-α, IFN-ß) and CXCLl0, a T-cell and antigen-presenting cells (APCs) recruitment chemokine, from both cancer cells and macrophages and polarized macrophages to the M1 subtype in in vitro studies. Notably, systemic administration of IQ/IC-LN allowed for the high accumulation of drug content in the tumor, followed by the effective uptake by immune cells in the TME. IQ/IC-LN treatment comprehensively enhanced the immunogenic condition in the TME, which robustly inhibited tumor growth in tumor-bearing mice. Furthermore, synergistic antitumor efficacy was obtained when the IQ/IC-LN-induced immunogenic state in TME was combined with anti-PD1 antibody therapy. Thus, our results suggest the potential of combining 2 TLR agonists to reform the TME from a "cold" to a "hot" state, supporting the therapeutic efficacy of immune checkpoint inhibitors.


Asunto(s)
Receptor Toll-Like 3 , Neoplasias de la Mama Triple Negativas , Humanos , Animales , Ratones , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Adyuvantes Inmunológicos , Liposomas , Poli I-C/uso terapéutico , Inmunoterapia/métodos , Microambiente Tumoral
14.
Mol Pharm ; 20(8): 4153-4164, 2023 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-37433746

RESUMEN

This study aimed to develop microspheres using water-soluble carriers and surfactants to improve the solubility, dissolution, and oral bioavailability of rivaroxaban (RXB). RXB-loaded microspheres with optimal carrier (poly(vinylpyrrolidone) K30, PVP) and surfactant (sodium lauryl sulfate (SLS)) ratios were prepared. 1H NMR and Fourier transform infrared (FTIR) analyses showed that drug-excipient and excipient-excipient interactions affected RXB solubility, dissolution, and oral absorption. Therefore, molecular interactions between RXB, PVP, and SLS played an important role in improving RXB solubility, dissolution, and oral bioavailability. Formulations IV and VIII, containing optimized RXB/PVP/SLS ratios (1:0.25:2 and 1:1:2, w/w/w), had significantly improved solubility by approximately 160- and 86-fold, respectively, compared to RXB powder, with the final dissolution rates improved by approximately 4.5- and 3.4-fold, respectively, compared to those of RXB powder at 120 min. Moreover, the oral bioavailability of RXB was improved by 2.4- and 1.7-fold, respectively, compared to that of RXB powder. Formulation IV showed the highest improvement in oral bioavailability compared to RXB powder (AUC, 2400.8 ± 237.1 vs 1002.0 ± 82.3 h·ng/mL). Finally, the microspheres developed in this study successfully improved the solubility, dissolution rate, and bioavailability of RXB, suggesting that formulation optimization with the optimal drug-to-excipient ratio can lead to successful formulation development.


Asunto(s)
Polímeros , Tensoactivos , Polímeros/química , Rivaroxabán/química , Disponibilidad Biológica , Microesferas , Polvos , Excipientes , Solubilidad , Lipoproteínas , Administración Oral
15.
Pharmaceutics ; 15(3)2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-36986792

RESUMEN

This study aimed to develop electrolyte complexes of paliperidone (PPD) with various particle sizes using cation-exchange resins (CERs) to enable controlled release (both immediate and sustained release). CERs of specific particle size ranges were obtained by sieving commercial products. PPD-CER complexes (PCCs) were prepared in an acidic solution of pH 1.2 and demonstrated a high binding efficiency (>99.0%). PCCs were prepared with CERs of various particle sizes (on average, 100, 150, and 400 µm) at the weight ratio of PPD to CER (1:2 and 1:4). Physicochemical characterization studies such as Fourier-transform infrared spectroscopy, differential scanning calorimetry, powder X-ray diffraction, and scanning electron microscopy between PCCs (1:4) and physical mixtures confirmed PCC formation. In the drug release test, PPD alone experienced a complete drug release from PCC of >85% within 60 min and 120 min in pH 1.2 and pH 6.8 buffer solutions, respectively. Alternatively, PCC (1:4) prepared with CER (150 µm) formed spherical particles and showed an almost negligible release of PPD in pH 1.2 buffer (<10%, 2 h) while controlling the release in pH 6.8 buffer (>75%, 24 h). The release rate of PPD from PCCs was reduced with the increase in CER particle size and CER ratio. The PCCs explored in this study could be a promising technology for controlling the release of PPD in a variety of methods.

16.
Pharmaceutics ; 14(9)2022 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-36145623

RESUMEN

The aim of this study was to develop a four-component self-nanoemulsifying drug delivery system (FCS) to enhance the solubility and dissolution of pazopanib hydrochloride (PZH). In the solubility test, PZH showed a highly pH-dependent solubility (pH 1.2 > water >> pH 4.0 and pH 6.8) and was solubilized at 70 °C in the order Kollisolv PG (5.38%, w/w) > Kolliphor RH40 (0.49%) > Capmul MCM C10 (0.21%) and Capmul MCM C8 (0.19%), selected as the solubilizer, the surfactant, and the oils, respectively. In the characterization of the three-component SNEDDS (TCS) containing Kolliphor RH40/Capmul MCM C10, the particle size of dispersion was very small (<50 nm) and the PZH loading was 0.5% at the weight ratio of 9/1. In the characterization of FCS containing additional Kollisolv PG to TCS, PZH loading was increased to 5.30% without any PZH precipitation, which was 10-fold higher compared to the TCS. The optimized FCS prepared with the selected formulation (Kolliphor RH40/Capmul MCM C10/Kollisolv PG) showed a consistently complete and high dissolution rate (>95% at 120 min) at four different pHs with 1% polysorbate 80, whereas the raw PZH and Kollisolv PG solution showed a pH-dependent poor dissolution rate (about 40% at 120 min), specifically at pH 6.8 with 1% polysorbate 80. In conclusion, PZH-loaded FCS in this work demonstrated enhanced solubility and a consistent dissolution rate regardless of medium pH.

17.
Chem Asian J ; 17(21): e202200595, 2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36066570

RESUMEN

The development of ideal wound dressing with excellent properties, such as exudate absorption capacity, drug release control ability, and increased wound healing, is currently a major requirement for wound healing. Polyvinyl alcohol (PVA) is a biodegradable semi-crystalline synthetic polymer that has been used in the field of biotechnology such as tissue regeneration, wound dressing, and drug delivery systems. In recent years, PVA-based wound dressing materials have received considerable attention due to their excellent properties such as biodegradability, biocompatibility, non-toxicity and low cost. PVA can be used as a wound dressing material to create the necessary moist wound environment, improve the physical properties of the dressing, and increase the wound healing rates. In addition, PVA can also be mixed with other organic and inorganic materials and can be used for drug delivery and wound healing. This review article addresses the role of biomaterials based on PVA mixed with other ingredients for wound dressing. It also focuses on its recent use in wound dressings as carriers of active substances.


Asunto(s)
Materiales Biocompatibles , Alcohol Polivinílico , Alcohol Polivinílico/química , Materiales Biocompatibles/farmacología , Materiales Biocompatibles/química , Vendajes , Cicatrización de Heridas , Hidrogeles/química , Polímeros
18.
Int J Biol Macromol ; 221: 1572-1579, 2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36108751

RESUMEN

This study aimed to develop a Lactobacillus plantarum (L. plantarum)-loaded dual-layer wound dressing (DLD) with excellent wound recovery and mechanical properties. L. plantarum-loaded DLD was fabricated by covering the hydrogel (inner layer) with a hydrocolloid (external layer). The hydrocolloid was manufactured by the hot-melt method, consisting of liquid paraffin, polyisobutylene, styrene-isoprene-styrene, and sodium carboxymethylcellulose (12:20:25:43, w/w/w/w). In contrast, the hydrogel was fabricated by the freeze-and-thaw method to load heat-labile L. plantarum. Various non-ionic materials have been investigated to select appropriate hydrogel components. The hydrogel composed of L. plantarum stock solution, guar gum, and polyvinyl alcohol (10:2:10, w/w/w) was chosen for its excellent swelling capacity and mechanical properties. As a result, heat-labile L. plantarum was successfully loaded into the guar-gum-based DLD. Moreover, guar gum-based DLD containing L. plantarum exhibited significantly enhanced swelling capacity and elasticity compared to single hydrogel layer (swelling capacity: DLD, 920.7 ± 32.4 % vs. hydrogel, 282.2 ± 6.5 %; elastic modulus: DLD, 2.9 ± 0.3 × 10-3 N/mm2 vs. hydrogel, 4.2. ± 0.7 × 10-3 N/mm2). The wound recovery test using Pseudomonas aeruginosa-infected animal model and histological profiles confirmed guar gum-based DLD containing L. plantarum to elicit accelerated wound recovery with complete re-epithelialization compared to commercial product and non-treated (recovery rate at Day 3: DLD, 67.8 ± 6.2 % vs. commercial product, 30.4 ± 11.7 % vs. non-treated, 14.2 ± 7.5 %). Therefore, L. plantarum-loaded DLD is an effective system for wound treatment.


Asunto(s)
Lactobacillus plantarum , Animales , Cicatrización de Heridas , Vendajes , Hidrogeles , Estirenos
19.
Int J Mol Sci ; 23(16)2022 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-36012748

RESUMEN

The purpose of this study was to investigate the efficacy of hydrophilic polymers in a solid dispersion formulation in improving the solubility and dissolution rate of rivaroxaban (RXB), a poorly soluble drug. The developed solid dispersion consisted of two components, a drug and a polymer, and the drug was dispersed as amorphous particles in a polymer matrix using the spray drying method. Polymeric solid dispersions were evaluated using solubility tests, in vitro dissolution tests, powder X-ray diffraction, differential scanning calorimetry, scanning electron microscopy, and particle size distribution analysis. To maximize physical stability against crystallization and improve the solubility and dissolution of RXB, it is important to select the appropriate polymer type and the optimal ratio of the polymer to the drug. The optimized polyvinyl alcohol (PVA)-based (1/0.5, w/w) and gelatin-based (1/5, w/w) solid dispersion formulations showed 6.3 and 3.6 times higher drug solubilities than pure RXB powder, respectively, and the final dissolution rate was improved by approximately 1.5 times. Scanning electron microscopy and particle size distribution analyses confirmed that the gelatin-based solid dispersion was smaller and more spherical than the PVA-based solid dispersion, suggesting that the gelatin-based solid dispersion had a faster initial dissolution rate. Differential scanning calorimetry and powder X-ray diffraction analyses confirmed that RXB had successfully changed from a crystalline form to an amorphous form, contributing to the improvement in its solubility and dissolution rate. This study provides a strategy for selecting suitable polymers for the development of amorphous polymer solid dispersions that can overcome precipitation during dissolution and stabilization of the amorphous state. In addition, the selected polymer solid dispersion improved the drug solubility and dissolution rate of RXB, a poorly soluble drug, and may be used as a promising drug delivery system.


Asunto(s)
Polímeros , Rivaroxabán , Rastreo Diferencial de Calorimetría , Química Farmacéutica/métodos , Composición de Medicamentos/métodos , Gelatina , Preparaciones Farmacéuticas , Polímeros/química , Polvos/química , Solubilidad , Agua/química , Difracción de Rayos X
20.
Pharmaceutics ; 14(8)2022 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-36015320

RESUMEN

Alectinib hydrochloride (ALH), a tyrosine kinase inhibitor, is a practically water-insoluble drug classified as BCS class IV. The present study aimed to develop novel suspended self-nanoemulsifying drug delivery system (Su-SNEDDS) to enhance the solubility and dissolution rate. The Su-SNEDDS was prepared by saturation and suspension of ALH in SNEDDS with ultrasonication energy. According to evaluation by the dispersion test and the results of particle size analysis, the selected SNEDDS composed of Kolliphor HS 15 and Capmul MCM C8 as surfactant and oil, respectively, showed a complete dissolution within 30 min. However, the SNEDDS loaded and solubilized only small amount of ALH (<0.6%, w/w). On the other hand, 10% ALH-loaded Su-SNEDDS containing small and micronized ALH particles of <5 µm had about 20-fold higher ALH-loading% than the SNEDDS and reached a 100% dissolution rate within 30 min in 1% sodium lauryl sulfate (SLS) pH 1.2 buffer. In the dispersion test and microscopic observation, micronized ALH particles in the Su-SNEDDS were readily dispersed in the dissolution medium with spontaneous nanoemulsion formation and instantly solubilized with the aid of SLS. Taken together, our results suggest that the Su-SNEDDS would be a potent oral dosage form to enhance the solubilization and dissolution rate of ALH in a new technological way.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...