Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 927: 172167, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38580118

RESUMEN

The improvement of food security and nutrition has attracted wide attention, and microalgae as the most promising food source are being further explored. This paper comprehensively introduces basic and functional nutrients rich in microalgae by elaborated tables incorporating a wide variety of studies and summarizes factors influencing their accumulation effects. Subsequently, multiple comparisons of nutrients were conducted, indicating that microalgae have a high protein content. Moreover, controllable production costs and environmental friendliness prompt microalgae into the list that contains more promising and reliable future food. However, microalgae and -based foods approved and sold are limited strictly, showing that safety is a key factor affecting dietary consideration. Notably, sensory profiles and ingredient clarity play an important role in improving the acceptance of microalgae-based foods. Finally, based on the bottleneck in the microalgae food industry, suggestions for its future development were discussed.


Asunto(s)
Microalgas , Inocuidad de los Alimentos , Nutrientes/análisis , Valor Nutritivo
2.
Bioresour Technol ; 401: 130731, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38663637

RESUMEN

There is limited research on physiological and degradation mechanisms of yellow mealworm, a novel organic waste converter, in processing lignocellulosic wastes. This study has selected two types of lignocellulosic wastes, distillers' grains (DG) and maize straw (MS), to feed yellow mealworms. This study investigated the effects of lignocellulosic wastes on the growth, antioxidant system, microbiome, and lipidome of yellow mealworms. The relative growth of lignocellulosic waste group was not significantly different from wheat bran. The antioxidant level was elevated in DG. MS was significantly enriched in cellulose-degrading bacteria in the gut and was accompanied by disturbances in lipid metabolism. The correlation coefficients were used to construct a network connecting diet, microbiota, and lipids. The correlation analysis indicated that two sphingolipids, hexylglyceramide and dihydroglyceramide, were strongly and positively linked with the dominating species. This study provides comprehensive information on physiological and mechanism of mealworms in process of treating lignocellulosic waste.


Asunto(s)
Microbioma Gastrointestinal , Lignina , Metabolismo de los Lípidos , Tenebrio , Lignina/metabolismo , Animales , Metabolismo de los Lípidos/fisiología , Microbioma Gastrointestinal/fisiología , Tenebrio/metabolismo , Antioxidantes/metabolismo , Zea mays/metabolismo
3.
Bioresour Technol ; 394: 130165, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38072079

RESUMEN

The present study evaluated the growth, self-flocculation, lipid content, and pollutants removal by Limnothrix sp. BASMWW-9 isolated from municipal wastewater treatment system and cultivated in municipal wastewater. The biomass yield and lipid content after 6 days of cultivation were 1.07 g dw/L and 27.34 %dw, respectively. In addition, its self-flocculating ability reached up to 90 % after harvesting time of 180 min. Moreover, COD,NH3-N, TN, and TP removalefficiencies were 71.65 %, 81.89 %, 74.64 %, and 80.16 %, respectively. The self-flocculation performance of Limnothrix sp. was greatly associated to its morphology and production of extracellular polymeric substances (EPS), with significant positive impact of the high calcium and magnesium content in municipal wastewater. Interestingly, blue light irradiation during harvest enhanced the aggregation and floc formation as a floating biomat, which was attributed to enhanced polysaccharides production. This study provides innovative harvest method for Limnothrix sp. BASMWW-9 cultivated in wastewater using blue light for enhanced lipid recovery.


Asunto(s)
Cianobacterias , Microalgas , Purificación del Agua , Aguas Residuales , Nitrógeno , Biomasa , Lípidos
4.
Sci Total Environ ; 912: 169025, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38056647

RESUMEN

This work first explored the feasibility and possible mechanisms of zero valent iron (ZVI) pretreatment on the generation of short-chain fatty acids (SCFAs) during thermophilic anaerobic fermentation of waste activated sludge (WAS). Results showed that ZVI enhanced the quantity of SCFAs. On Day 6, the SCFAs production reached 455.84 ± 47.88 mg COD/g VSS at 5 g/L of ZVI addition, which increased by 63.80 % relative to control. The presence of ZVI can effectively promote butyric-based fermentation. ZVI accelerated the destruction of extracellular polymeric substances (EPS) and interior sludge cells, as well as improved biodegradation of soluble organics. Also, ZVI enhanced key enzyme activities (i.e., BK and CoA-), thus promoting degradation rates of acidogenesis (6.30 ± 0.84 mg/(gVSS·h) in glucose) and acetogenesis (74.63 ± 0.29 mg/(gVSS·h) in butyrate). Compared to Fe(III), the contribution of Fe(II) was higher among the decomposition products of ZVI. Besides, ZVI favored Proteobacteria and Actinobacteria, which enhanced acetate formation and organic compounds disassimilation of the process, respectively. The abundance of Tepidiphilus, Thermobrachium and Tepidimicrobium was increased, indicating promoting the system stability of SCFAs production in thermophilic anaerobic fermentation.


Asunto(s)
Hierro , Aguas del Alcantarillado , Fermentación , Anaerobiosis , Aguas del Alcantarillado/microbiología , Ácidos Grasos Volátiles , Concentración de Iones de Hidrógeno
5.
Sci Total Environ ; 912: 169217, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38081429

RESUMEN

Aurantiochytrium sp. belongs to marine heterotrophic single-cell protist, which is an important decomposer in marine ecosystem. Aurantiochytrium sp. has gained notoriety because of its ability to accumulate high-value docosahexaenoic acid (DHA), but the key factors of DHA synthesis were unclear at present. In this study, Atmospheric and Room Temperature Plasma technology was applied to the mutagenic breeding of Aurantiochytrium sp., and transcriptomics and proteomics were adopted to analyze the DHA-biosynthesis mechanism. According to the growth and DHA accumulation profiles, the mutant strain Aurantiochytrium sp. R2A35 was selected. The DHA content in total lipids was greatly improved from 49.39 % of the wild strain R2 to 63.69 % of the mutant strain. Moreover, the DHA content in the biomass of Aurantiochytrium sp. R2A35 as 39.72 % was the highest DHA productivity reported so far. The differentially expressed genes distinguished from transcriptome and the TMT-identified differential proteins distinguished from proteome confirmed that the expression of acetyl-CoA carboxylase and ketoacyl reductase was up-regulated by 4.78-fold and 6.95-fold, respectively and the fatty acid synthase was concurrently down-regulated by 2.79-fold, so that more precursor was transported to the polyketide synthase pathway, thereby increasing the DHA yield in Aurantiochytrium sp. R2A35. This research would provide reference for the DHA metabolism process and contribute to the understanding of the decomposer - Aurantiochytrium sp. in marine ecosystems.


Asunto(s)
Ácidos Docosahexaenoicos , Estramenopilos , Ácidos Docosahexaenoicos/metabolismo , Ecosistema , Temperatura , Multiómica , Estramenopilos/metabolismo , Mutagénesis
6.
J Hepatocell Carcinoma ; 10: 1587-1593, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37791067

RESUMEN

Background: Advanced-stage hepatocellular carcinoma (HCC), especially huge HCC or portal vein tumour thrombus (PVTT), is difficult to treat, and the prognosis is poor. The advantages of hepatic artery infusion chemotherapy (HAIC) combined with targeted therapy and immunotherapy for this complex disease are gradually becoming apparent. However, HAIC still has some inevitable disadvantages, such as arterial perfusion therapy requiring a long time, which results in many patients having difficulty completing the procedure. Modified HAIC (mHAIC)-based oxaliplatin and S-1 is a new treatment option for huge HCC or PVTT that can reduce complications and improve patient compliance. We report two cases of huge HCC or PVTT that were successfully treated with mHAIC combined with lenvatinib and camrelizumab. The clinical presentations, treatment strategies, and outcomes of these cases are presented. Case Presentation: Case 1: A 52-year-old female was found to have a huge HCC with a size of 14×11 cm. She was treated with one cycle of mHAIC combined with transcatheter arterial chemoembolization (TACE), lenvatinib and camrelizumab and 3 cycles of mHAIC in combination with lenvatinib and camrelizumab. The patient's follow-up maintenance therapy with lenvatinib and camrelizumab has been evaluated for efficacy in achieving complete response (CR). Case 2: A 57-year-old man was diagnosed with advanced HCC in combination with PVTT. He achieved partial remission (PR) after four cycles of mHAIC combined with lenvatinib and camrelizumab. This was followed by treatment with lenvatinib and camrelizumab with an efficacy assessment for CR, and progression-free survival (PFS) was 7 months. Conclusion: For advanced HCC with a large mass or PVTT, mHAIC combined with lenvatinib and camrelizumab is a safe and effective treatment with good patient compliance.

7.
Chemosphere ; 340: 139986, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37640213

RESUMEN

In this study, we investigated the deactivation kinetics and mechanism of N-F-TiO2/SiO2 nanopowder as a model photocatalyst for the purpose of facilitating the photocatalytic degradation of acrylonitrile (AN) in aqueous environment. Prior research has already displayed the proficient degradation of AN through the utilization of N-F-TiO2/SiO2 catalysts, revealing a degradation efficiency of 81.2% within a span of 6 min at an initial AN concentration of 10 mg/L. Multiple variables including the initial AN concentration, illumination intensity, and initial pH value were extensively analyzed during the degradation process. The kinetics of photocatalytic degradation of AN, facilitated by the N-F-TiO2/SiO2 photocatalyst, were modeled by fitting the pseudo first-order reaction kinetics to each individual factor. Furthermore, the adverse effect of catalyst poisoning during the photocatalytic breakdown of AN using the N-F-TiO2/SiO2 photocatalyst was analyzed through a range of different techniques including SEM, XPS, BET, XRD, TG, and NH3-TPD. The incorporation of findings from these diverse techniques revealed that, the primary factors contributing to the photocatalyst's poisoning were as follows: (i) During the degradation process, the build-up of intermediate molecules on active sites hindered their functionality, leading to a decrease in the efficiency of the photocatalytic reaction, (ii) Carbonaceous deposits formed when the catalyst's pore structure was obstructed by pollutants or intermediate products that had not undergone timely photocatalytic breakdown and (iii) The persistent erosion of active sites due to hydraulic forces resulted in inadequate performance of the N-F-TiO2/SiO2 photocatalyst in aqueous solutions. A comprehensive analysis of the deactivation kinetics was conducted, deciding in the formulation of a detailed poisoning mechanism for the N-F-TiO2/SiO2 photocatalyst. Additionally, we explored the catalysts regeneration, involving thermal treatment, ultrasonic irradiation, and catalyst reloading. This study not only advances our insight into the waning performance of catalysts in aqueous media but also establishes a conceptual framework for extrapolating analogous deactivation dynamics in other catalysts, grounded in precedent experimental knowledge. This research contributes to the development of a deactivation model for catalysts in the aqueous environment, based on existing experimental research, providing a theoretical framework for understanding the deactivation process of photocatalysts.


Asunto(s)
Acrilonitrilo , Nanopartículas , Flúor , Dióxido de Silicio , Nitrógeno
8.
Bioresour Technol ; 386: 129534, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37488013

RESUMEN

Photosynthetic microorganisms in microalgal-bacterial granular sludge offer advantages in wastewater treatment processes. This study examined the effects of light intensity and salinity on microalgal-bacterial granular sludge formation and microbial changes. Activated sludge was inoculated into three bioreactors and operated in batch treatment mode for 100 days under different light intensities (0, 60, and 120 µmol m-2 s-1) and staged increases in salinity concentration (0, 1, 2, and 3%). Results showed that microalgal-bacterial granular sludge was successfully formed within 30 days, and high light exposure increased algal particle stability and inorganic nitrogen removal (63, 66, 71%), while chemical oxygen demand removal (>95%) was similar across groups. High-throughput sequencing results showed that the critical algae were Chlorella and diatoms, while the main bacteria included Paracoccus and Xanthomarina with high extracellular polymeric substance production. This study aims to enhance the comprehension of MBGS processes in saline wastewater treatment under varying light intensities.


Asunto(s)
Chlorella , Microalgas , Aguas del Alcantarillado/microbiología , Salinidad , Matriz Extracelular de Sustancias Poliméricas , Bacterias , Reactores Biológicos/microbiología , Nitrógeno , Eliminación de Residuos Líquidos/métodos
9.
Bioresour Technol ; 381: 129141, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37169198

RESUMEN

Effects of different nutrient ratios on the biochemical compositions of microalgae and the changes were rarely studied at the molecular level. In this study, the impacts of various nitrogen to phosphorus (N/P) ratios on growing of C. pyrenoidosa, as well as biochemical compositions and the metabolic regulation mechanism in mixed sewage, were investigated. The results suggested that 18 was optimal N/P ratio, while the dry weight (1.0 g/L), chlorophyll-a (Chla) (3.63 mg/L), and lipid production (0.28 g/L) were all the highest comparing with other groups. In contrast, the protein production (0.37 g/L) was the least. The nature of the regulatory mechanisms inthe metabolic pathways of these biochemical compositions was revealed by proteomic results, and there were 62 different expression proteins (DEPs) taken part in fatty acid and lipid biosynthesis metabolism (FA), amino acid biosynthesis metabolism (AA), photosynthesis (PHO), carbon fixation in photosynthetic organisms (CFP), and central carbon metabolism (CCM).


Asunto(s)
Chlorella , Microalgas , Aguas Residuales , Chlorella/metabolismo , Lípidos , Nitrógeno/metabolismo , Fósforo/metabolismo , Proteómica , Microalgas/metabolismo , Biomasa
10.
J Colloid Interface Sci ; 640: 456-471, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-36870221

RESUMEN

The occurrence of micropollutants in aquatic media raises great concern because of their biological toxicity and persistence. Herein, visible-light-driven photocatalyst titanium dioxide/graphitic carbon nitride/triiron tetraoxide (TiO2-x/g-C3N4/Fe3O4, TCNF) with oxygen vacancies (Ov) was prepared via a facile hydrothermal-calcination method. The complementary visible-light co-absorption among semiconductors enhances light-harvesting efficiency. The built-in electric field formed during Fermi level alignment drives photoinduced electron transfer to improve charge separation across the interfaces. The increased light-harvesting and favorable energy band bending significantly enhance the photocatalytic performance. Therefore, TCNF-5-500/persulfate system could effectively photodegrade bis-phenol A within 20 min under visible-light irradiation. Moreover, the superior durability, non-selective oxidation, adaptability, and eco-friendliness of the system were confirmed by different reaction conditions and biotoxicity assessment. Furthermore, the photodegradation reaction mechanism was presented according to the major reactive oxygen species produced in the system. Thus, this study constructed a dual step-scheme heterojunction by tuning visible-light absorption and energy band structure to increase the charge transfer efficiency and photogenerated carrier lifetime, which has great potential for environmental remediation using visible photocatalysis.

11.
Sci Total Environ ; 858(Pt 3): 160108, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36370786

RESUMEN

Plastic waste has gained remarkable research attention due to its accumulation, associated environmental issues, and impact on living organisms. In order to overcome this challenge, there is an urgent need for its removal from the environment. Under this menace, finding appropriate treatment methods like biodegradation instead of typical treatment methods is of supreme importance. However, there is a limited review on bio-decomposition of plastics, existing microbial species, their degradation efficacy, and mechanism. From this point of view, this study focused on a brief overview of biodegradation such as influencing factors on biodegradation, existing species for macro- and micro-plastics, and present research gap. Degradation percentage, limitations of existing species, and future recommendations are proposed. Microbial species such as bacteria, algae, and fungi have the ability to decompose plastics but they are unable to completely mineralize the plastics. Meanwhile, there is limited knowledge about the involved enzymes in plastics degradation, especially in the case of algae. Bio-decomposition of plastics requires more stringent conditions which are usually feasible for field application. This work will be a reference for new researchers to use this effective strategy for plastic pollution removal.


Asunto(s)
Microplásticos , Plásticos
12.
Sci Total Environ ; 849: 157949, 2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-35961391

RESUMEN

In this study, a novel aquatic worm conditioning method was proposed to enhance sludge dewaterability by reducing filamentous bacteria. The optimal treatment time was 4 days and the optimal sludge concentration was 5000 mg/L. Under these conditions, the sludge dewaterability was improved with CST of 16.69 s, reduction in sludge SRF of 48.95 %, and reduction in LfA of 58.23 %. After bio-conditioning, sludge flocs broke up by the aquatic worm predation. The absolute zeta potential decreased to -8.27 mV, and the particle size increased from 36.64 µm to 48.05 µm. Proteins, polysaccharides and other organic substances in sludge EPS and microbial cells were released, with the viscosity reduced to 1.16 mPa·s and the bound water converted into free water. Besides, the number and abundance of representative filamentous Chloroflexi decreased, resulting in the enhancement of sludge dewatering performance. Overall, the aquatic worm conditioning process can be divided into two steps: Sludge destruction by the aquatic worm predation and sludge re-coagulation by filamentous bacteria as a skeleton.


Asunto(s)
Oligoquetos , Aguas del Alcantarillado , Animales , Bacterias , Tamaño de la Partícula , Polisacáridos , Aguas del Alcantarillado/microbiología , Eliminación de Residuos Líquidos/métodos , Agua
13.
J Hazard Mater ; 437: 129416, 2022 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-35897174

RESUMEN

In recent years, there has been growing interest in the mechanism (radical or nonradical) of persulfate activation processes. In this study, the enhancement of naproxen (NPX) degradation in a Cu0/peroxymonosulfate (PMS) system by complexing reagents was investigated. Surprisingly, neocuproine (NCP) alters the nature of reactive species in the Cu0/PMS system. A high-valent copper species, Cu(III)-NCP, was found to dominate NPX degradation rather than radicals under acid conditions for the first time. Moreover, systematically designed experiments revealed that the Cu(III)-NCP complex was a strong selective oxidant that reacted with organics through a single electron transfer pathway. Meanwhile, the degradation efficiency of NPX was highly dependent on the solution pH and dosage of Cu0 and NCP, but was irrelevant to the concentration of NPX. Additionally, the enhancement of NCP on other copper based PMS activation systems (i.e., Cu2+/HA/PMS and Cu0/HA/PMS systems) was investigated. Considering that the released copper can be removed by a simple precipitation method to meet the effluent standards, the new complex-enhanced Cu0/PMS system provided a new method to enhance the degradation efficiencies of pollutants by a copper-catalyzed Fenton-like system.


Asunto(s)
Naproxeno , Contaminantes Químicos del Agua , Cobre , Indicadores y Reactivos , Oxidación-Reducción , Peróxidos , Contaminantes Químicos del Agua/análisis
14.
Environ Res ; 212(Pt D): 113465, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35594959

RESUMEN

Mass production of microalgal biodiesel is hindered by microalgae harvesting efficiency and costs. In this study, Daphnia domesticated by amino acids were used to harvest microalgae via ingesting. The main factors (density of Daphnia, salinity, pH, light-environment, temperature and algal concentration) that were conducive to Daphnia feeding were optimized. Under the optimal condition, Microalgae-feeding Daphnia were domesticated by adding D-glutamic acid and L-cysteine as stimulating factors. After that, the ingestion rate of domesticated Daphnia increased by 24.93%. The presence of Daphnia as a predator can induce microalgae to mass into clusters. Combining Daphnia feeding and the inductive defense flocculation of microalgae, the harvesting rate of mixed algae (Chlorella pyrenoidosa and Scenedesmus obliquus) reached over 95% after 9 h. Overall, this work suggested that Daphnia feeding process is a green and economical approach for microalgae harvesting.


Asunto(s)
Chlorella , Microalgas , Aminoácidos/metabolismo , Animales , Biocombustibles , Biomasa , Daphnia , Floculación , Microalgas/metabolismo
15.
Environ Sci Technol ; 56(7): 4518-4530, 2022 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-35258928

RESUMEN

Conventional separation membranes suffer from evitable fouling and flux decrease for water treatment applications. Herein, a novel protocol of electro-enhanced membrane separation is proposed for the efficient treatment of microsized emulsions (∼1 µm) by rationally designing robust electroresponsive copper metallic membranes, which could mitigate oil fouling and coenhance permeance (from ∼1026 to ∼2516 L·m-2·h-1·bar-1) and rejection (from ∼87 to ∼98%). High-flux Cu membranes exhibit superior ductility and electrical conductivity, enabling promising electroactivity. Separation performance and the fouling mechanism were studied under different electrical potentials and ionic strengths. Application of negative polarization into a large-pore (∼2.1 µm) Cu membrane is favorable to not only almost completely reject smaller-sized oil droplets (∼1 µm) but also achieve antifouling and anticorrosion functions. Moreover, surfactants around oil droplets might be redistributed due to electrostatic repulsion, which effectively enhances the steric hindrance effect between neighboring oil droplets, mitigating oil coalescence and consequently membrane fouling. Furthermore, due to the screening effect of surfactants, the presence of low-concentration salts increases the adsorption of surfactants at the oil-water interface, thus preventing oil coalescence via decreasing oil-water interfacial tension. However, under high ionic strengths, the fouling mechanism converts from cake filtration to a complete blocking model due to the reduced electrostatic repulsion between the Cu membrane and oil droplets. This work would provide mechanistic insights into electro-enhanced antifouling for not only oil emulsion separation but also more water treatment applications using rationally designed novel electroresponsive membranes.

16.
Sci Total Environ ; 806(Pt 3): 151336, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34743821

RESUMEN

A bacteria strain Citrobacter W4 isolated from the microalgae sewage culture system showed flocculating activity against Chlorella pyrenoidosa. In this work, operation parameters under outdoor conditions were optimized. When the bacterial-algal ratio was 4:1, G value was 26.30 s-1, and harvesting time was 6 h, the harvesting efficiency achieved 87.37 ± 2.96% without ions addition and pH adjustment. The microbial community structure analysis showed Citrobacter W4 was dominant in the harvesting process. Flocculating active substances were on the surface and metabolites of Citrobacter W4. The main component of bacteria flocculating active substances was protein. Polysaccharides and carboxylic acid also promoted flocculation. The flocculation mechanisms were mainly adsorption bridging, net catching, and sweeping, not electric neutralization. The quality of FAMEs was improved after flocculation. The cost of 1 kg dried microalgae flocculated by Citrobacter W4 was $1.35. The novel flocculating bacteria showed the potential to harvest microalgae cost-effectively and environmentally friendly.


Asunto(s)
Chlorella , Microalgas , Bacterias , Biomasa , Citrobacter , Floculación , Aguas Residuales
17.
Am J Transl Res ; 13(11): 12395-12409, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34956461

RESUMEN

The participation of STAT3 and its upstream inhibitors, PIAS3 and SOCS1, in the oxidative response of hepatocellular carcinoma (HCC) cells was uncertain. Here, the expression of PIAS3 and SOCS1 in HCC tissues and cell lines was explored, and we sought to determine whether oxidative stress epigenetically regulated PIAS3 and SOCS1 expression and STAT3 activation in HCC cells. The expression of PIAS3 and SOCS1 was markedly decreased in HCC cell lines and tissues compared to normal hepatic cells and tissues. In HCC patients, low PIAS3 and SOCS1 expression were associated with poor survival. Oxidative stress induced by H2O2 in HepG2 cells was indicated by low antioxidant levels and high protein carbonyl content. Moreover, oxidative stress in HepG2 cells contributed to reduced proliferation but increased apoptosis, migration, and invasion capacity, which might be counteracted by antioxidants, such as tocopheryl acetate (TA). PIAS3 and SOCS1 expression was markedly decreased, while STAT3 was activated in HepG2 cells in response to H2O2 exposure. Co-treatment with antioxidant TA effectively increased the expression of PIAS3 and SOCS1, but it dephosphorylated STAT3 in H2O2-treated cells. PIAS1 or SOCS1 overexpression in HepG2 cells after H2O2 treatment restored cell viability and anti-oxidative responses and decreased apoptosis, migration, and invasion ability, and dephosphorylated STAT3 levels. Co-administration of the STAT3 activator, colivelin, partially abolished the effect of PIAS3 and SOCS1 overexpression in these processes. Therefore, oxidative stress in HCC cells may improve their migration and reduce proliferation through STAT3 activation through the repression of PIAS3 and SOCS1 expression.

18.
Water Res ; 194: 116919, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33609906

RESUMEN

Understanding of microplastics transport mechanism is highly important for soil contamination and remediation. The transport behaviors of microplastics in soils are complex and influenced by various factors including soil and particle properties, hydrodynamic conditions, and biota activities. Via a microfluidic experiments we study liquid film entrainment and microplastics transport and retention during two-phase displacement in microchannels with one end connected to the air and the other connected to the liquid with suspended particles. We discover three transport patterns of microplastic particles, ranging from no deposition to particle entrapment and to particle layering within liquid films, depending on the suspension withdrawal rates and the particle volume fraction in the suspension. The general behavior of particle motion is effectively captured by the film thickness evolution which is shown to be dependent on a modified capillary number Ca0 taking into account the effects of flow velocity, particle volume fraction, and channel shape. We also provide a theoretical prediction of the critical capillary number Ca0* for particle entrapment, consistent with the experimental results. In addition, the probability of microplastics being dragged into the trailing liquid film near the gas invading front is found to be proportional to both particle volume fraction and the capillary number. This work elucidates the microplastics transport mechanism during unsaturated flow, and therefore is of theoretical and practical importance to understand the contaminant migration in many natural and engineered systems spanning from groundwater sources to water treatment facilities.


Asunto(s)
Agua Subterránea , Microplásticos , Biota , Plásticos , Suelo
19.
Water Sci Technol ; 81(11): 2441-2449, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32784287

RESUMEN

Municipal sludge disposal and recycle has become a prominent research theme. In this study, a sequential process for integral treatment of municipal sludge was primarily presented, combining acid leaching, anion exchange and aerobic composting. The aim of the process was to remove chromium (Cr) from the sludge and reuse the sludge as manure. Firstly, Cr was removed from municipal sludge via the acid leaching process; the removal rate was up to 57.43%. Then, ion exchange resin was used to remove Cr from leachate; the removal rate reached 95%. Aluminum sheet was used to replace the Cr from eluent; the replacement rate was 63.3%. The aerobic composting process could be successfully warmed up to above 55 °C and lasted for 4 days; the seed germination index reached 68.3%. After the composting process, the residual Cr in sludge mainly existed at a more stable residual state and organic binding state. Overall, this novel sequential process serves as a potential high-efficiency, green, low-energy way for municipal sludge recycle.


Asunto(s)
Compostaje , Aniones , Estiércol , Reciclaje , Aguas del Alcantarillado
20.
World J Microbiol Biotechnol ; 36(7): 105, 2020 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-32632607

RESUMEN

With the increasing demand for energy, microalgae, as one of the promising feedstocks of biodiesel, has raised great awareness. Because of its small size, similar density to water and electrical stability, harvesting methods of microalgae that have low energy consumption and that are highly efficient, easy to large-scale and environmentally friendly have become a bottleneck restricting development of the whole process. Among the numerous possible harvesting methods, magnetic flocculation has the advantages of simple operation, fast separation and energy saving and thus is considered as a promising novel harvesting method. In this review, we have summarized the updated status and application potential of magnetic flocculation, including the principle of magnetic flocculation, magnetic flocculating materials, flocculating efficiency and its effect on downstream process. The major challenges such as magnetic materials recovery, large-scale magnetic flocculation device design, and magnetic flocculation costs are also discussed.


Asunto(s)
Biocombustibles , Fenómenos Magnéticos , Microalgas , Biomasa , Biotecnología/métodos , Floculación , Microalgas/crecimiento & desarrollo , Microalgas/metabolismo , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA