Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Plast Reconstr Aesthet Surg ; 95: 357-367, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38971123

RESUMEN

BACKGROUND: Autologous fat transplantation is limited by the uncertainty of graft retention, impeding its application. Among the current strategies for processing lipoaspirates, high-density fat (HDF) is recommended owing to the enrichment of stem cells and washing before cotton concentration for simplicity of operation. Poloxamer 188 (P188) washing has been shown to repair the membranes of damaged cells. This study aimed to investigate the effect of P188-washing on fat graft survival and identify the best technique for processing lipoaspirates. METHODS: Lipoaspirates were prepared using centrifugation to obtain HDF, which was then washed with saline or P188 followed by cotton concentration. Tissue integrity, adipocytic activity, and viability of stromal vascular fraction (SVF) in the samples from the 3 groups were assessed. Samples were sequenced in vitro using high-throughput RNA-seq, and differentially expressed genes were validated using qPCR and western blotting (WB). After transplantation under the dorsum of nude mice for 8 weeks, the grafts were extracted and examined for residual volume, histologic characteristics, and vascularization. RESULTS: The HDF and P188 groups showed a higher survival rate of SVF, more Ki67-positive cells, intact tissue structure, and lesser fibrosis than the saline group. There were no significant differences in the density of SVF and residual volume of grafts. HDF showed significantly improved vascularization during 8 weeks. Through RNA-seq and bioinformatic analysis, notable changes in several related genes after transplantation were observed. CONCLUSIONS: P188 treatment can prevent cells from apoptosis and preserve tissue viability, thereby improving graft quality. HDF contains large amounts of SVF and can be regarded as an excellent grafting material.

2.
Signal Transduct Target Ther ; 9(1): 133, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38744811

RESUMEN

Sirtuin 3 (SIRT3) is well known as a conserved nicotinamide adenine dinucleotide+ (NAD+)-dependent deacetylase located in the mitochondria that may regulate oxidative stress, catabolism and ATP production. Accumulating evidence has recently revealed that SIRT3 plays its critical roles in cardiac fibrosis, myocardial fibrosis and even heart failure (HF), through its deacetylation modifications. Accordingly, discovery of SIRT3 activators and elucidating their underlying mechanisms of HF should be urgently needed. Herein, we identified a new small-molecule activator of SIRT3 (named 2-APQC) by the structure-based drug designing strategy. 2-APQC was shown to alleviate isoproterenol (ISO)-induced cardiac hypertrophy and myocardial fibrosis in vitro and in vivo rat models. Importantly, in SIRT3 knockout mice, 2-APQC could not relieve HF, suggesting that 2-APQC is dependent on SIRT3 for its protective role. Mechanically, 2-APQC was found to inhibit the mammalian target of rapamycin (mTOR)-p70 ribosomal protein S6 kinase (p70S6K), c-jun N-terminal kinase (JNK) and transforming growth factor-ß (TGF-ß)/ small mother against decapentaplegic 3 (Smad3) pathways to improve ISO-induced cardiac hypertrophy and myocardial fibrosis. Based upon RNA-seq analyses, we demonstrated that SIRT3-pyrroline-5-carboxylate reductase 1 (PYCR1) axis was closely assoiated with HF. By activating PYCR1, 2-APQC was shown to enhance mitochondrial proline metabolism, inhibited reactive oxygen species (ROS)-p38 mitogen activated protein kinase (p38MAPK) pathway and thereby protecting against ISO-induced mitochondrialoxidative damage. Moreover, activation of SIRT3 by 2-APQC could facilitate AMP-activated protein kinase (AMPK)-Parkin axis to inhibit ISO-induced necrosis. Together, our results demonstrate that 2-APQC is a targeted SIRT3 activator that alleviates myocardial hypertrophy and fibrosis by regulating mitochondrial homeostasis, which may provide a new clue on exploiting a promising drug candidate for the future HF therapeutics.


Asunto(s)
Cardiomegalia , Fibrosis , Sirtuina 3 , Animales , Humanos , Masculino , Ratones , Ratas , Cardiomegalia/genética , Cardiomegalia/tratamiento farmacológico , Cardiomegalia/patología , Cardiomegalia/inducido químicamente , Cardiomegalia/metabolismo , Fibrosis/genética , Homeostasis/efectos de los fármacos , Isoproterenol , Ratones Noqueados , Mitocondrias/efectos de los fármacos , Mitocondrias/genética , Mitocondrias/patología , Mitocondrias/metabolismo , Mitocondrias Cardíacas/efectos de los fármacos , Mitocondrias Cardíacas/genética , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/patología , Miocardio/patología , Miocardio/metabolismo , Sirtuina 3/efectos de los fármacos , Sirtuina 3/metabolismo
3.
J Adv Res ; 58: 175-191, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37192730

RESUMEN

BACKGROUND: Autophagy refers to the conserved cellular catabolic process relevant to lysosome activity and plays a vital role in maintaining the dynamic equilibrium of intracellular matter by degrading harmful and abnormally accumulated cellular components. Accumulating evidence has recently revealed that dysregulation of autophagy by genetic and exogenous interventions may disrupt cellular homeostasis in human diseases. In silico approaches as powerful aids to experiments have also been extensively reported to play their critical roles in the storage, prediction, and analysis of massive amounts of experimental data. Thus, modulating autophagy to treat diseases by in silico methods would be anticipated. AIM OF REVIEW: Here, we focus on summarizing the updated in silico approaches including databases, systems biology network approaches, omics-based analyses, mathematical models, and artificial intelligence (AI) methods that sought to modulate autophagy for potential therapeutic purposes, which will provide a new insight into more promising therapeutic strategies. KEY SCIENTIFIC CONCEPTS OF REVIEW: Autophagy-related databases are the data basis of the in silico method, storing a large amount of information about DNA, RNA, proteins, small molecules and diseases. The systems biology approach is a method to systematically study the interrelationships among biological processes including autophagy from a macroscopic perspective. Omics-based analyses are based on high-throughput data to analyze gene expression at different levels of biological processes involving autophagy. mathematical models are visualization methods to describe the dynamic process of autophagy, and its accuracy is related to the selection of parameters. AI methods use big data related to autophagy to predict autophagy targets, design targeted small molecules, and classify diverse human diseases for potential therapeutic applications.


Asunto(s)
Inteligencia Artificial , Modelos Teóricos , Humanos , Biología de Sistemas/métodos , Autofagia , Homeostasis
4.
J Cancer Res Clin Oncol ; 149(18): 16691-16703, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37725244

RESUMEN

PURPOSE: Uveal melanoma (UVM) is a rare yet malignant ocular tumor that metastases in approximately half of all patients, with the majority of those developing metastasis typically succumbing to the disease within a year. Hitherto, no effective treatment for UVM has been identified. Autophagy is a cellular mechanism that has been suggested as an emerging regulatory process for cancer-targeted therapy. Thus, identifying novel prognostic biomarkers of autophagy may help improve future treatment. METHODS: Consensus clustering and similarity network fusion approaches were performed for classifying UVM patient subgroups. Weighted correlation network analysis was performed for gene module screening and network construction. Gene set variation analysis was used to evaluate the autophagy activity of the UVM subgroups. Kaplan-Meier survival curves (Log-rank test) were performed to analyze patient prognosis. Gene set cancer analysis was used to estimate the level of immune cell infiltration. RESULTS: In this study, we employed multi-omics approaches to classify UVM patient subgroups by molecular and clinical characteristics, ultimately identifying HTR2B, EEF1A2, FEZ1, GRID1, HAP1, and SPHK1 as potential prognostic biomarkers of autophagy in UVM. High expression levels of these markers were associated with poorer patient prognosis and led to reshaping the tumor microenvironment (TME) that promotes tumor progression. CONCLUSION: We identified six novel potential prognostic biomarkers in UVM, all of which are associated with autophagy and TME. These findings will shed new light on UVM therapy with inhibitors targeting these biomarkers expected to regulate autophagy and reshape the TME, significantly improving UVM treatment outcomes.


Asunto(s)
Melanoma , Neoplasias de la Úvea , Humanos , Pronóstico , Multiómica , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Melanoma/patología , Neoplasias de la Úvea/patología , Autofagia/genética , Microambiente Tumoral , Factor 1 de Elongación Peptídica/metabolismo
5.
Biochim Biophys Acta Rev Cancer ; 1878(4): 188916, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37196782

RESUMEN

Coactivator-associated arginine methyltransferase 1 (CARM1), a type I protein arginine methyltransferase (PRMT), has been widely reported to catalyze arginine methylation of histone and non-histone substrates, which is closely associated with the occurrence and progression of cancer. Recently, accumulating studies have demonstrated the oncogenic role of CARM1 in many types of human cancers. More importantly, CARM1 has been emerging as an attractive therapeutic target for discovery of new candidate anti-tumor drugs. Therefore, in this review, we summarize the molecular structure of CARM1 and its key regulatory pathways, as well as further discuss the rapid progress in better understanding of the oncogenic functions of CARM1. Moreover, we further demonstrate several representative targeted CARM1 inhibitors, especially focusing on demonstrating their designing strategies and potential therapeutic applications. Together, these inspiring findings would shed new light on elucidating the underlying mechanisms of CARM1 and provide a clue on discovery of more potent and selective CARM1 inhibitors for the future targeted cancer therapy.


Asunto(s)
Neoplasias , Proteína-Arginina N-Metiltransferasas , Humanos , Histonas/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Proteína-Arginina N-Metiltransferasas/genética , Proteína-Arginina N-Metiltransferasas/química , Proteína-Arginina N-Metiltransferasas/metabolismo
6.
Bioorg Chem ; 131: 106329, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36565674

RESUMEN

A series of lathyrane-type Euphorbia diterpene derivatives featured 3R configuration (H-3ß) were synthesized from natural rich Euphorbia factor L3via modified Mitsunobu reaction based on configuration inversion strategy. The antiproliferation activity and MDR reversal ability of the lathyrane derivatives were evaluated, and the most synthesized compounds showed moderate or strong potencies. Among them, diterpenes 21 (IC50 values of 2.6, 5.2 and 13.1 µM, respectively) and 25 (IC50 values of 5.5, 8.6 and 1.3 µM, respectively) presented the strong cytotoxicity against MCF-7, 4 T1 and HepG2 cells. Meanwhile, derivative 25 exhibited excellent MDR reversal ability with the reversal fold of 16.1 higher than that of verapamil. The cellular thermal shift assay and molecular docking proved direct engagement of diterpene 25 to ABCB1, suggesting 25 could be a promising MDR modulator. Furthermore, the preliminary SARs of these diterpenes were also discussed.


Asunto(s)
Antineoplásicos , Diterpenos , Euphorbia , Humanos , Línea Celular Tumoral , Diterpenos/síntesis química , Diterpenos/farmacología , Euphorbia/química , Células Hep G2 , Simulación del Acoplamiento Molecular , Estructura Molecular , Antineoplásicos/síntesis química , Antineoplásicos/química , Antineoplásicos/farmacología
7.
Drug Discov Today ; 27(8): 2373-2385, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35589015

RESUMEN

Autophagy, an evolutionarily highly conserved cellular degradation process, plays the Janus role (either cytoprotective or death-promoting) in colorectal cancer, so the targeting of several key autophagic pathways with small-molecule compounds may be a new therapeutic strategy. In this review, we discuss autophagy-associated cell death pathways and key cytoprotective autophagy pathways in colorectal cancer. Moreover, we summarize a series of small-molecule compounds that have the potential to modulate autophagy-associated cell death or cytoprotective autophagy for therapeutic purposes. Taken together, these findings demonstrate the Janus role of autophagy in colorectal cancer, and shed new light on the exploitation of a growing number of small-molecule compounds to target autophagy in future cancer drug discovery.


Asunto(s)
Antineoplásicos , Neoplasias Colorrectales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Autofagia , Neoplasias Colorrectales/tratamiento farmacológico , Descubrimiento de Drogas , Humanos , Transducción de Señal
8.
Acta Pharm Sin B ; 12(2): 532-557, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35256933

RESUMEN

Drug repurposing or repositioning has been well-known to refer to the therapeutic applications of a drug for another indication other than it was originally approved for. Repurposing non-oncology small-molecule drugs has been increasingly becoming an attractive approach to improve cancer therapy, with potentially lower overall costs and shorter timelines. Several non-oncology drugs approved by FDA have been recently reported to treat different types of human cancers, with the aid of some new emerging technologies, such as omics sequencing and artificial intelligence to overcome the bottleneck of drug repurposing. Therefore, in this review, we focus on summarizing the therapeutic potential of non-oncology drugs, including cardiovascular drugs, microbiological drugs, small-molecule antibiotics, anti-viral drugs, anti-inflammatory drugs, anti-neurodegenerative drugs, antipsychotic drugs, antidepressants, and other drugs in human cancers. We also discuss their novel potential targets and relevant signaling pathways of these old non-oncology drugs in cancer therapies. Taken together, these inspiring findings will shed new light on repurposing more non-oncology small-molecule drugs with their intricate molecular mechanisms for future cancer drug discovery.

9.
J Hematol Oncol ; 15(1): 32, 2022 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-35313929

RESUMEN

Hepatocellular carcinoma (HCC) is well-known to be a highly prevalent malignant tumor, but the treatment of this pathological state has been still challenging. Solamargine (SM), a traditional Chinese herb-derived compound, has been widely reported to possess multiple antitumor properties. However, whether SM plays a vital role in HCC therapy and how it exerts an antitumor effect remains unclear. Thus, in this study, we demonstrated that SM inhibited the proliferation of HCC and effectively induced HCC cell apoptosis and autophagy in vitro and in vivo. Mechanistically, the oncogenic factor LIF was aberrantly elevated in HCC tissues and down-regulated by SM in HCC cells, as well as subsequently the overexpression of LIF could restore the anti-HCC effects of SM via miR-192-5p/CYR61/Akt signaling pathways. Additionally, SM could repolarize tumor associated macrophages by LIF/p-Stat3 to inhibit the growth and epithelial-mesenchymal transition of HCC, and simultaneously affected other immune cell populations in the immune (tumor) microenvironment by regulating macrophages, such as MDSCs, DCs and T cell populations. Together, these findings exploit the potential use of SM against HCC and shed light on exploring SM as a potent candidate drug for the future HCC therapeutics.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroARNs , Apoptosis , Autofagia , Carcinoma Hepatocelular/genética , Línea Celular Tumoral , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Hepáticas/genética , MicroARNs/genética , MicroARNs/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Alcaloides Solanáceos , Microambiente Tumoral
10.
Drug Discov Today ; 27(2): 612-625, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34718209

RESUMEN

Evasion of regulated cell death (RCD), mainly referring to apoptosis, autophagy-dependent cell death, necroptosis, and other subroutines, is one of the well-established hallmarks of cancer cells. Accumulating evidence has revealed several small-molecule compounds that target different subroutines of RCD in cancer therapy. In this review, we summarize key pathways of apoptosis, autophagy-dependent cell death and necroptosis in cancer, and describe small-molecule compounds that target these pathways and have potential as therapeutics. These inspiring findings light the way towards the discovery of more 'magic bullets' that could work individually or cooperatively to target precisely the three RCD subroutines and so improve cancer treatment.


Asunto(s)
Muerte Celular Autofágica , Neoplasias , Muerte Celular Regulada , Apoptosis/fisiología , Autofagia , Humanos , Necroptosis , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo
11.
Drug Discov Today ; 27(1): 246-256, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34438075

RESUMEN

Bromodomain-containing protein 4 (BRD4) is emerging as a therapeutic target that acts synergistically with other targets of small-molecule drugs in cancer. Therefore, the discovery of potential new dual-target inhibitors of BRD4 may be a promising strategy for cancer therapy. In this review, we highlight a series of strategies to design therapeutic dual-target inhibitors of BRD4 that focus on the synergistic functions of this protein. Drug combinations that exploit synthetic lethality, protein-protein interactions, functional complementarity, and blocking of resistance mechanisms could ultimately overcome the barriers inherent to the development of BRD4 inhibitors as future cancer drugs.


Asunto(s)
Antineoplásicos/farmacología , Proteínas de Ciclo Celular , Diseño de Fármacos/métodos , Terapia Molecular Dirigida , Neoplasias , Factores de Transcripción , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas de Ciclo Celular/metabolismo , Humanos , Terapia Molecular Dirigida/métodos , Terapia Molecular Dirigida/tendencias , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Relación Estructura-Actividad , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/metabolismo
12.
Pharmacogenet Genomics ; 32(4): 125-137, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34954767

RESUMEN

Oral squamous cell carcinoma (OSCC) is one of the most common malignant tumors worldwide and there are few crucial regulators and druggable targets for early diagnosis. Therefore, the identification of biomarkers for the early diagnosis and druggable targets of OSCC is imminent. In this study, we integrated gene set enrichment analysis, differential gene expression analysis based on the negative binomial distribution, weighted correlation network analysis, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes into analyzing the OSCC cohort downloaded from The Cancer Genome Atlas, and found that cell cycle and related biologic processes are significantly enriched. Then, we constructed the core gene network of OSCC, which showed the connection of encode human Cyclin-A2 protein, encode RAD51-associated protein 1, encode human centromere-associated protein E (CENPE), encode humans centromere protein I (CENPI) and encode polo-like kinase 1 (PLK1) to several cell cycle-related genes. Survival analysis further showed that low expression of these genes was associated with a better prognosis. Furthermore, we utilized a high-throughput virtual screening to find new CENPE and PLK1 inhibitors, and one of the CENPE inhibitor DB04517 suppressed the proliferation of OSCC cells by cell cycle arrest of cell cycle. Taken together, these candidate regulators could serve as the candidate diagnostic and prognostic biomarkers for OSCC, and specific suppression of these genes may be a potential approach to prevent and treat OSCC with the candidate inhibitors.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Neoplasias de la Boca , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Ciclo Celular/genética , Biología Computacional , Regulación Neoplásica de la Expresión Génica , Neoplasias de Cabeza y Cuello/genética , Humanos , Neoplasias de la Boca/tratamiento farmacológico , Neoplasias de la Boca/genética , Neoplasias de la Boca/metabolismo , Pronóstico , Carcinoma de Células Escamosas de Cabeza y Cuello/genética
13.
Cell Prolif ; 54(12): e13135, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34632655

RESUMEN

OBJECTIVES: Autophagy, a highly conserved lysosomal degradation process in eukaryotic cells, has been widely reported closely related to the progression of many types of human cancers, including LGG; however, the intricate relationship between autophagy and LGG remains to be clarified. MATERIALS AND METHODS: Multi-omics methods were used to integrate omics data to determine potential autophagy regulators in LGG. The expression of ZFP36L2 and RAB13 in SW1088 cells was experimentally manipulated using cDNAs and small interfering RNAs (siRNA). RT-qPCR detects RNAi gene knockout and cDNA overexpression efficiency. The expression levels of proteins in SW1088 cells were evaluated using Western blot analysis and immunofluorescence analysis. Homology modelling and molecular docking were used to identify compounds from Multi-Traditional Chinese Medicine (TCM) Databases. The apoptosis ratios were determined by flow cytometry analysis of Annexin-V/PI double staining. We detect the number of autophagosomes by GFP-MRFP-LC3 plasmid transfection to verify the process of autophagy flow. RESULTS: We integrated various omics data from LGG, including EXP, MET and CNA data, with the SNF method and the LASSO algorithm, and identified ZFP36L2 and RAB13 as positive regulators of autophagy, which are closely related to the core autophagy regulators. Both transcription level and protein expression level of the four autophagy regulators, including ULK1, FIP200, ATG16L1 and ATG2B, and LC3 puncta were increased by ZFP36L2 and RAB13 overexpression. In addition, RAB13 participates in autophagy through ATG2B, FIP200, ULK1, ATG16L1 and Beclin-1. Finally, we screened multi-TCM databases and identified gallic acid as a novel potential RAB13 inhibitor, which was confirmed to negatively regulate autophagy as well as to induce cell death in SW1088 cells. CONCLUSION: Our study identified the key autophagic regulators ZFP36L2 and Rab13 in LGG progression, and demonstrated that gallic acid is a small molecular inhibitor of RAB13, which negatively regulates autophagy and provides a possible small molecular medicine for the subsequent treatment of LGG.


Asunto(s)
Autofagia , Bases de Datos Factuales , Glioma , Medicina Tradicional China , Simulación del Acoplamiento Molecular , Proteínas de Unión al GTP rab , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Glioma/tratamiento farmacológico , Glioma/enzimología , Humanos , Proteínas de Unión al GTP rab/antagonistas & inhibidores , Proteínas de Unión al GTP rab/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...