Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; 11(12): e2306893, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38225898

RESUMEN

H2 generation from methanol-water mixtures often requires high pressure and high temperature (200-300 °C). However, CO can be easily generated and poison the catalytic system under such high temperature. Therefore, it is highly desirable to develop the efficient catalytic systems for H2 production from methanol at room temperature, even at sub-zero temperatures. Herein, carbon nanotube-supported Pt nanocomposites are designed and synthesized as high-performance nano-catalysts, via stabilization of Pt nanoparticles onto carbon nanotube (CNT), for H2 production upon methanol dehydrogenation at sub-zero temperatures. Therein, the optimal Pt/CNT nanocomposite presents the superior catalytic performance in H2 production upon methanol dehydrogenation at the expense of B2(OH)4, with the TOF of 299.51 min-130 oC. Compared with other common carriers, Pt/CNT exhibited the highest catalytic performance in H2 production, emphasizing the critical role of CNT in methanol dehydrogenation. The confinement of Pt nanoparticles by CNTs is conducive to inhibiting the aggregation of Pt nanoparticles, thereby significantly increasing its catalytic performance and stability. The kinetic study, detailed mechanistic insights, and density functional theory (DFT) calculation confirm that the breaking of O─H bond of CH3OH is the rate-controlling step for methanol dehydrogenation, and both H atoms of H2 are supplied by methanol. Interestingly, H2 is also successfully produced from methanol dehydrogenation at -10 °C, which absolutely solves the freezing problem in the H2 evolution upon water-splitting reaction.

2.
Nanoscale ; 15(39): 15975-15981, 2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37782093

RESUMEN

Although sodium formate is widely used as a conventional additive to enhance selective H2 evolution from HCOOH dehydrogenation, this leads to a waste of resources and an increase in the cost of H2 production. For this reason, N-doped carbon nanospheres with abundant graphitic C/N have been designed to enrich the electron cloud density of the Pd atom for improving its catalytic activity in H2 generation upon additive-free HCOOH dehydrogenation. Herein, we have synthesized N-doped carbon nanosphere-stabilized Pd nanoparticles (Pd/NCSs) as high-efficiency nano-catalysts, via fixation of Pd nanoparticles onto N-doped carbon nanospheres (NCSs), for selective and controlled H2 generation upon additive-free HCOOH dehydrogenation. Pd/NCS-800 (1640 h-1) provided a 12 times larger TOF than commercial Pd/C (134 h-1) in H2 generation upon additive-free HCOOH dehydrogenation. It seemed that graphitic N/C of NCS-800 enriched the electron cloud density of the Pd atom, which was favorable for the cleavage of C-H bonds in HCOOH dehydrogenation. In addition, the selective H2 evolution from additive-free HCOOH dehydrogenation over Pd/NCS-800 is successfully controlled by adjusting the pH.

3.
Neurobiol Dis ; 171: 105801, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35753625

RESUMEN

Mild traumatic brain injury (mTBI) gives rise to a remarkable breadth of pathobiological consequences, principal among which are traumatic axonal injury and perturbation of the functional integrity of neuronal networks that may arise secondary to the elimination of the presynaptic contribution of axotomized neurons. Because there exists a vast diversity of neocortical neuron subtypes, it is imperative to elucidate the relative vulnerability to axotomy among different subtypes. Toward this end, we exploited SOM-IRES-Cre mice to investigate the consequences of the central fluid percussion model of mTBI on the microanatomical integrity and the functional efficacy of the somatostatin (SOM) interneuron population, one of the principal subtypes of neocortical interneuron. We found that the SOM population is resilient to axotomy, representing only 10% of the global burden of inhibitory interneuron axotomy, a result congruous with past work demonstrating that parvalbumin (PV) interneurons bear most of the burden of interneuron axotomy. However, the intact structure of SOM interneurons after injury did not translate to normal cellular function. One day after mTBI, the SOM population is more intrinsically excitable and demonstrates enhanced synaptic efficacy upon post-synaptic layer 5 pyramidal neurons as measured by optogenetics, yet the global evoked inhibitory tone within layer 5 is stable. Simultaneously, there exists a significant increase in the frequency of miniature inhibitory post-synaptic currents within layer 5 pyramidal neurons. These results are consistent with a scheme in which 1 day after mTBI, SOM interneurons are stimulated to compensate for the release from inhibition of layer 5 pyramidal neurons secondary to the disproportionate axotomy of PV interneurons. The enhancement of SOM interneuron intrinsic excitability and synaptic efficacy may represent the initial phase of a dynamic process of attempted autoregulation of neocortical network homeostasis secondary to mTBI.


Asunto(s)
Conmoción Encefálica , Animales , Axotomía , Interneuronas/fisiología , Ratones , Parvalbúminas , Somatostatina
4.
Neuropharmacology ; 212: 109066, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35461879

RESUMEN

Many tobacco smokers consume nicotine intermittently, but the underlying mechanisms and neurobiological changes associated with intermittent nicotine intake are unclear. Understanding intermittent nicotine intake is a high priority, as it could promote therapeutic strategies to attenuate tobacco consumption. We examined nicotine intake behavior and neurobiological changes in male rats that were trained to self-administer nicotine during brief (5 min) trials interspersed with longer (15 min) drug-free periods. Rats readily adapted to intermittent access (IntA) SA following acquisition on a continuous access (ContA) schedule. Probabilistic analysis of IntA nicotine SA suggested reduced nicotine loading behavior compared to ContA, and nicotine pharmacokinetic modeling revealed that rats taking nicotine intermittently may have increased intake to maintain blood levels of nicotine that are comparable to ContA SA. After IntA nicotine SA, rats exhibited an increase in unreinforced responses for nicotine-associated cues (incubation of craving) and specific alterations in the striatal proteome after 7 days without nicotine. IntA nicotine SA also induced nAChR functional upregulation in the interpeduncular nucleus (IPN), and it enhanced nicotine binding in the brain as determined via [11C]nicotine positron emission tomography. Reducing the saliency of the cue conditions during the 5 min access periods attenuated nicotine intake, but incubation of craving was preserved. Together, these results indicate that IntA conditions promote nicotine SA and nicotine seeking after a nicotine-free period.


Asunto(s)
Núcleo Interpeduncular , Nicotina , Animales , Conducta Animal , Comportamiento de Búsqueda de Drogas , Núcleo Interpeduncular/metabolismo , Masculino , Ratas , Recurrencia , Autoadministración
5.
Neuropharmacology ; 208: 108987, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35167902

RESUMEN

The interpeduncular nucleus (IPN) plays a key role in nicotine dependence and is involved in regulation of fear responses, affective states, and novelty processing. IPN neurons express nicotinic acetylcholine receptors (nAChR) and receive strong cholinergic innervation from the ventral medial habenula. Dorsal medial habenula neurons are primarily peptidergic, releasing substance P (SP) mainly onto IPN neurons in the lateral subnucleus (IPL). IPL neurons are sensitive to SP, but it is not known if they are involved in cholinergic transmission like other IPN neurons. We examined nAChR subunit gene expression in IPL neurons, revealing that Chrna7 (α7 nAChR subunit) is expressed in a subset of GABAergic IPL neurons. In patch-clamp recordings from IPL neurons, ACh-evoked inward currents were attenuated by methyllycaconitine (α7 nAChR antagonist) and potentiated by NS1738 (α7 Type I positive allosteric modulator). We confirmed α7 functional expression in IPL neurons by also showing that ACh-evoked currents were potentiated by PNU-120596 (Type II positive allosteric modulator). Additional pharmacological experiments show that IPN neurons expressing α7 nAChRs also express α3ß4 nAChRs. Finally, we used 2-photon laser scanning microscopy and nicotine uncaging to directly examine the morphology of IPL neurons that express α7 nAChRs. These results highlight a novel aspect of α7 nAChR neurobiology, adding to the complexity of cholinergic modulation by nAChRs in the IPN.


Asunto(s)
Núcleo Interpeduncular , Receptores Nicotínicos , Colinérgicos/metabolismo , Neuronas GABAérgicas/metabolismo , Núcleo Interpeduncular/metabolismo , Receptores Nicotínicos/metabolismo , Receptor Nicotínico de Acetilcolina alfa 7/genética , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo
6.
eNeuro ; 7(4)2020.
Artículo en Inglés | MEDLINE | ID: mdl-32675176

RESUMEN

Chronic nicotine upregulates nicotinic acetylcholine receptors (nAChRs) throughout the brain, and reducing their activity may promote somatic and affective states that lead to nicotine seeking. nAChRs are functionally upregulated in animal models using passive nicotine administration, but whether/how it occurs in response to volitional nicotine intake is unknown. The distinction is critical, as drug self-administration (SA) can induce neurotransmission and cellular excitability changes that passive drug administration does not. In this study, we probed the question of whether medial habenula (MHb) nAChRs are functionally augmented by nicotine SA. Male rats were implanted with an indwelling jugular catheter and trained to nose poke for nicotine infusions. A saline SA group controlled for non-specific responding and nicotine-associated visual cues. Using patch-clamp whole-cell recordings and local application of acetylcholine, we observed robust functional enhancement of nAChRs in MHb neurons from rats with a history of nicotine SA. To determine whether upregulated receptors are generally enhanced or directed to specific cellular compartments, we imaged neurons during recordings using two-photon laser scanning microscopy (2PLSM). nAChR activity at the cell soma and on proximal and distal dendrites was examined by local nicotine uncaging using a photoactivatable nicotine (PA-Nic) probe and focal laser flash photolysis. Results from this experiment revealed strong nAChR enhancement at all examined cellular locations. Our study demonstrates nAChR functional enhancement by nicotine SA, confirming that volitional nicotine intake sensitizes cholinergic systems in the brain. This may be a critical plasticity change supporting nicotine addiction.


Asunto(s)
Habénula , Receptores Nicotínicos , Tabaquismo , Animales , Habénula/metabolismo , Masculino , Nicotina/farmacología , Plásticos , Ratas , Receptores Nicotínicos/metabolismo
7.
Neurochem Int ; 131: 104552, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31545995

RESUMEN

The inhibitory activity of (±)-citalopram on human (h) α3ß4, α4ß2, and α7 nicotinic acetylcholine receptors (AChRs) was determined by Ca2+ influx assays, whereas its effect on rat α9α10 and mouse habenular α3ß4* AChRs by electrophysiological recordings. The Ca2+ influx results clearly establish that (±)-citalopram inhibits (IC50's in µM) hα3ß4 AChRs (5.1 ±â€¯1.3) with higher potency than that for hα7 (18.8 ±â€¯1.1) and hα4ß2 (19.1 ±â€¯4.2) AChRs. This is in agreement with the [3H]imipramine competition binding results indicating that (±)-citalopram binds to imipramine sites at desensitized hα3ß4 with >2-fold higher affinity than that for hα4ß2. The electrophysiological, molecular docking, and in silico mutation results indicate that (±)-citalopram competitively inhibits rα9α10 AChRs (7.5 ± 0.9) in a voltage-independent manner by interacting mainly with orthosteric sites, whereas it inhibits a homogeneous population of α3ß4* AChRs at MHb (VI) neurons (7.6 ± 1.0) in a voltage-dependent manner by interacting mainly with a luminal site located in the middle of the ion channel, overlapping the imipramine site, which suggests an ion channel blocking mechanism. In conclusion, (±)-citalopram inhibits α3ß4 and α9α10 AChRs with higher potency compared to other AChRs but by different mechanisms. (±)-Citalopram also inhibits habenular α3ß4*AChRs, supporting the notion that these receptors are important endogenous targets related to their anti-addictive activities.


Asunto(s)
Antidepresivos/farmacología , Citalopram/farmacología , Habénula/metabolismo , Receptores Nicotínicos/efectos de los fármacos , Animales , Antidepresivos Tricíclicos/metabolismo , Unión Competitiva/efectos de los fármacos , Calcio/metabolismo , Células HEK293 , Habénula/efectos de los fármacos , Humanos , Imipramina/metabolismo , Modelos Moleculares , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Técnicas de Placa-Clamp , Receptores Nicotínicos/metabolismo , Xenopus
8.
J Neurosci ; 39(22): 4268-4281, 2019 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-30867261

RESUMEN

Antagonism of nicotinic acetylcholine receptors (nAChRs) in the medial habenula (MHb) or interpeduncular nucleus (IPN) triggers withdrawal-like behaviors in mice chronically exposed to nicotine, implying that nicotine dependence involves the sensitization of nicotinic signaling. Identification of receptor and/or neurophysiological mechanisms underlying this sensitization is important, as it could promote novel therapeutic strategies to reduce tobacco use. Using an approach involving photoactivatable nicotine, we previously demonstrated that chronic nicotine (cNIC) potently enhances nAChR function in dendrites of MHb neurons. However, whether cNIC modulates downstream components of the habenulo-interpeduncular (Hb-IP) circuit is unknown. In this study, cNIC-mediated changes to Hb-IP nAChR function were examined in mouse (male and female) brain slices using molecular, electrophysiological, and optical techniques. cNIC enhanced action potential firing and modified spike waveform characteristics in MHb neurons. Nicotine uncaging revealed nAChR functional enhancement by cNIC on proximal axonal membranes. Similarly, nAChR-driven glutamate release from MHb axons was enhanced by cNIC. In IPN, the target structure of MHb axons, neuronal morphology, and nAChR expression is complex, with stronger nAChR function in the rostral subnucleus [rostral IPN (IPR)]. As in MHb, cNIC induced strong upregulation of nAChR function in IPN neurons. This, coupled with cNIC-enhanced nicotine-stimulated glutamate release, was associated with stronger depolarization responses to brief (1 ms) nicotine uncaging adjacent to IPR neurons. Together, these results indicate that chronic exposure to nicotine dramatically alters nicotinic cholinergic signaling and cell excitability in Hb-IP circuits, a key pathway involved in nicotine dependence.SIGNIFICANCE STATEMENT This study uncovers several neuropharmacological alterations following chronic exposure to nicotine in a key brain circuit involved in nicotine dependence. These results suggest that smokers or regular users of electronic nicotine delivery systems (i.e., "e-cigarettes") likely undergo sensitization of cholinergic circuitry in the Hb-IP system. Reducing the activity of Hb-IP nAChRs, either volitionally during smoking cessation or inadvertently via receptor desensitization during nicotine intake, may be a key trigger of withdrawal in nicotine dependence. Escalation of nicotine intake in smokers, or tolerance, may involve stimulation of these sensitized cholinergic pathways. Smoking cessation therapeutics are only marginally effective, and by identifying cellular/receptor mechanisms of nicotine dependence, our results take a step toward improved therapeutic approaches for this disorder.


Asunto(s)
Habénula/efectos de los fármacos , Núcleo Interpeduncular/efectos de los fármacos , Vías Nerviosas/efectos de los fármacos , Nicotina/farmacología , Animales , Femenino , Habénula/metabolismo , Núcleo Interpeduncular/metabolismo , Masculino , Ratones , Vías Nerviosas/metabolismo , Agonistas Nicotínicos/farmacología , Receptores Nicotínicos/metabolismo , Transmisión Sináptica/efectos de los fármacos , Tabaquismo/metabolismo
9.
Cell Rep ; 23(8): 2236-2244, 2018 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-29791835

RESUMEN

Ventral tegmental area (VTA) glutamate neurons are important components of reward circuitry, but whether they are subject to cholinergic modulation is unknown. To study this, we used molecular, physiological, and photostimulation techniques to examine nicotinic acetylcholine receptors (nAChRs) in VTA glutamate neurons. Cells in the medial VTA, where glutamate neurons are enriched, are responsive to acetylcholine (ACh) released from cholinergic axons. VTA VGLUT2+ neurons express mRNA and protein subunits known to comprise heteromeric nAChRs. Electrophysiology, coupled with two-photon microscopy and laser flash photolysis of photoactivatable nicotine, was used to demonstrate nAChR functional activity in the somatodendritic subcellular compartment of VTA VGLUT2+ neurons. Finally, optogenetic isolation of intrinsic VTA glutamatergic microcircuits along with gene-editing techniques demonstrated that nicotine potently modulates excitatory transmission within the VTA via heteromeric nAChRs. These results indicate that VTA glutamate neurons are modulated by cholinergic mechanisms and participate in the cascade of physiological responses to nicotine exposure.


Asunto(s)
Ácido Glutámico/metabolismo , Neuronas/metabolismo , Receptores Nicotínicos/metabolismo , Transmisión Sináptica , Área Tegmental Ventral/metabolismo , Animales , Ratones , ARN Mensajero/genética , ARN Mensajero/metabolismo
10.
Nat Methods ; 15(5): 347-350, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29578537

RESUMEN

Photoactivatable pharmacological agents have revolutionized neuroscience, but the palette of available compounds is limited. We describe a general method for caging tertiary amines by using a stable quaternary ammonium linkage that elicits a red shift in the activation wavelength. We prepared a photoactivatable nicotine (PA-Nic), uncageable via one- or two-photon excitation, that is useful to study nicotinic acetylcholine receptors (nAChRs) in different experimental preparations and spatiotemporal scales.


Asunto(s)
Nicotina/farmacología , Procesos Fotoquímicos , Receptores Nicotínicos/fisiología , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Calcio , Inmunohistoquímica , Ratones , Microscopía Confocal , Espectrometría de Fluorescencia , Espectrofotometría Ultravioleta
11.
Cereb Cortex ; 28(5): 1625-1644, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28334184

RESUMEN

Diffuse axonal injury (DAI) plays a major role in cortical network dysfunction posited to cause excitatory/inhibitory imbalance after mild traumatic brain injury (mTBI). Current thought holds that white matter (WM) is uniquely vulnerable to DAI. However, clinically diagnosed mTBI is not always associated with WM DAI. This suggests an undetected neocortical pathophysiology, implicating GABAergic interneurons. To evaluate this possibility, we used mild central fluid percussion injury to generate DAI in mice with Cre-driven tdTomato labeling of parvalbumin (PV) interneurons. We followed tdTomato+ profiles using confocal and electron microscopy, together with patch-clamp analysis to probe for DAI-mediated neocortical GABAergic interneuron disruption. Within 3 h post-mTBI tdTomato+ perisomatic axonal injury (PSAI) was found across somatosensory layers 2-6. The DAI marker amyloid precursor protein colocalized with GAD67 immunoreactivity within tdTomato+ PSAI, representing the majority of GABAergic interneuron DAI. At 24 h post-mTBI, we used phospho-c-Jun, a surrogate DAI marker, for retrograde assessments of sustaining somas. Via this approach, we estimated DAI occurs in ~9% of total tdTomato+ interneurons, representing ~14% of pan-neuronal DAI. Patch-clamp recordings of tdTomato+ interneurons revealed decreased inhibitory transmission. Overall, these data show that PV interneuron DAI is a consistent and significant feature of experimental mTBI with important implications for cortical network dysfunction.


Asunto(s)
Lesiones Traumáticas del Encéfalo/complicaciones , Lesión Axonal Difusa/etiología , Neocórtex/patología , Inhibición Neural/fisiología , Vías Nerviosas/patología , Parvalbúminas/metabolismo , Potenciales de Acción/fisiología , Animales , Lesiones Traumáticas del Encéfalo/patología , Lesión Axonal Difusa/patología , Modelos Animales de Enfermedad , Antagonistas de Aminoácidos Excitadores/farmacología , Glutamato Descarboxilasa/metabolismo , Potenciales Postsinápticos Inhibidores/efectos de los fármacos , Potenciales Postsinápticos Inhibidores/genética , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Masculino , Ratones , Ratones Transgénicos , Neocórtex/ultraestructura , Proteínas del Tejido Nervioso/metabolismo , Inhibición Neural/genética , Vías Nerviosas/ultraestructura , Parvalbúminas/genética , Quinoxalinas/farmacología , Valina/análogos & derivados , Valina/farmacología , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/metabolismo
12.
Int J Biochem Cell Biol ; 92: 202-209, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-29042244

RESUMEN

The inhibitory activity of coronaridine congeners on human (h) α4ß2 and α7 nicotinic acetylcholine receptors (AChRs) is determined by Ca2+ influx assays, whereas their effects on neurons in the ventral inferior (VI) aspect of the mouse medial habenula (MHb) are determined by patch-clamp recordings. The Ca2+ influx results clearly establish that coronaridine congeners inhibit hα3ß4 AChRs with higher selectivity compared to hα4ß2 and hα7 subtypes, and with the following potency sequence, for hα4ß2: (±)-18-methoxycoronaridine [(±)-18-MC]>(+)-catharanthine>(±)-18-methylaminocoronaridine [(±)-18-MAC] ∼ (±)-18-hydroxycoronaridine [(±)-18-HC]; and for hα7: (+)-catharanthine>(±)-18-MC>(±)-18-HC>(±)-18-MAC. Interestingly, the inhibitory potency of (+)-catharanthine (27±4µM) and (±)-18-MC (28±6µM) on MHb (VI) neurons was lower than that observed on hα3ß4 AChRs, suggesting that these compounds inhibit a variety of endogenous α3ß4* AChRs. In addition, the interaction of bupropion with (-)-ibogaine sites on hα3ß4 AChRs is tested by [3H]ibogaine competition binding experiments. The results indicate that bupropion binds to ibogaine sites at desensitized hα3ß4 AChRs with 2-fold higher affinity than at resting receptors, suggesting that these compounds share the same binding sites. In conclusion, coronaridine congeners inhibit hα3ß4 AChRs with higher selectivity compared to other AChRs, by interacting with the bupropion (luminal) site. Coronaridine congeners also inhibit α3ß4*AChRs expressed in MHb (VI) neurons, supporting the notion that these receptors are important endogenous targets for their anti-addictive activities.


Asunto(s)
Habénula/efectos de los fármacos , Habénula/metabolismo , Ibogaína/análogos & derivados , Antagonistas Nicotínicos/química , Antagonistas Nicotínicos/farmacología , Receptores Nicotínicos/metabolismo , Animales , Ibogaína/química , Ibogaína/metabolismo , Ibogaína/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Antagonistas Nicotínicos/metabolismo , Conformación Proteica , Receptores Nicotínicos/química
13.
Am J Physiol Cell Physiol ; 305(10): C1080-90, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-23986203

RESUMEN

Hypoglossal motoneurons (HNs) control tongue movement and play a role in maintenance of upper airway patency. Defects in these neurons may contribute to the development of sleep apnea and other cranial motor disorders including Rett syndrome (RTT). HNs are modulated by norepinephrine (NE) through α-adrenoceptors. Although postsynaptic mechanisms are known to play a role in this effect, how NE modulates the synaptic transmissions of HNs remains poorly understood. More importantly, the NE system is defective in RTT, while how the defect affects HNs is unknown. Believing that information of NE modulation of HNs may help the understanding of RTT and the design of new therapeutical interventions to motor defects in the disease, we performed these studies in which glycinergic inhibitory postsynaptic currents and intrinsic membrane properties were examined in wild-type and Mecp2(-/Y) mice, a mouse of model of RTT. We found that activation of α1-adrenoceptor facilitated glycinergic synaptic transmission and excited HNs. These effects were mediated by both pre- and postsynaptic mechanisms. The latter effect involved an inhibition of barium-sensitive G protein-dependent K(+) currents. The pre- and postsynaptic modulations of the HNs by α1-adrenoceptors were not only retained in Mecp2-null mice but also markedly enhanced, which appears to be a compensatory mechanism for the deficiencies in NE and GABAergic synaptic transmission. The existence of the endogenous compensatory mechanism is an encouraging finding, as it may allow therapeutical modalities to alleviate motoneuronal defects in RTT.


Asunto(s)
Nervio Hipogloso/citología , Proteína 2 de Unión a Metil-CpG/metabolismo , Neuronas Motoras/fisiología , Receptores Adrenérgicos alfa/metabolismo , Animales , Membrana Celular/fisiología , Fenómenos Electrofisiológicos , Regulación de la Expresión Génica/fisiología , Masculino , Proteína 2 de Unión a Metil-CpG/genética , Ratones , Mutación , Técnicas de Placa-Clamp , Receptores Adrenérgicos alfa/genética , Sinapsis
14.
Am J Physiol Cell Physiol ; 304(9): C844-57, 2013 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-23392116

RESUMEN

Rett syndrome is an autism spectrum disorder resulting from defects in the gene encoding the methyl-CpG-binding protein 2 (MeCP2). Deficiency of the Mecp2 gene causes abnormalities in several systems in the brain, especially the norepinephrinergic and GABAergic systems. The norepinephrinergic neurons in the locus coeruleus (LC) modulate a variety of neurons and play an important role in multiple functions in the central nervous system. In Mecp2(-/Y) mice, defects in the intrinsic membrane properties of LC neurons have been identified, while how their synaptic inputs are affected remains unclear. Therefore, we performed these brain slice studies to demonstrate how LC neurons are regulated by GABAergic inputs and how such synaptic inputs are affected by Mecp2 knockout. In whole cell current clamp, the firing activity of LC neurons was strongly inhibited by the GABAA receptor agonist muscimol, accompanied by hyperpolarization and a decrease in input resistance. Such a postsynaptic inhibition was significantly reduced (by ~30%) in Mecp2(-/Y) mice. Post- and presynaptic GABABergic inputs were found in LC neurons, which were likely mediated by the G protein-coupled, Ba(2+)-sensitive K(+) channels. The postsynaptic GABABergic inhibition was deficient by ~50% in Mecp2 knockout mice. Although the presynaptic GABABergic modulation appeared normal, both frequency and amplitude of the GABAAergic mIPSCs were drastically decreased (by 30-40%) in Mecp2-null mice. These results suggest that the Mecp2 disruption causes defects in both post- and presynaptic GABAergic systems in LC neurons, impairing GABAAergic and GABABergic postsynaptic inhibition and decreasing the GABA release from presynaptic terminals.


Asunto(s)
Neuronas GABAérgicas/fisiología , Locus Coeruleus/patología , Proteína 2 de Unión a Metil-CpG/genética , Membranas Sinápticas/metabolismo , Animales , Baclofeno/análogos & derivados , Baclofeno/farmacología , Femenino , Antagonistas del GABA/farmacología , Agonistas de Receptores de GABA-A/farmacología , Agonistas de Receptores GABA-B/farmacología , Neuronas GABAérgicas/efectos de los fármacos , Neuronas GABAérgicas/metabolismo , Humanos , Masculino , Potenciales de la Membrana/efectos de los fármacos , Proteína 2 de Unión a Metil-CpG/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Muscimol/farmacología , Técnicas de Placa-Clamp , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio de Rectificación Interna/metabolismo , Terminales Presinápticos/fisiología , Receptores de GABA-A/metabolismo , Receptores de GABA-B/metabolismo , Síndrome de Rett/genética , Síndrome de Rett/patología , Membranas Sinápticas/fisiología , Transmisión Sináptica , Ácido gamma-Aminobutírico/metabolismo
15.
Eur J Neurosci ; 36(4): 2482-92, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22616751

RESUMEN

The intra-pallidal application of γ-aminobutyric acid (GABA) transporter subtype 1 (GAT-1) or GABA transporter subtype 3 (GAT-3) transporter blockers [1-(4,4-diphenyl-3-butenyl)-3-piperidinecarboxylic acid hydrochloride (SKF 89976A) or 1-[2-[tris(4-methoxyphenyl)methoxy]ethyl]-(S)-3-piperidinecarboxylic acid (SNAP 5114)] reduces the activity of pallidal neurons in monkey. This effect could be mediated through the activation of presynaptic GABA(B) heteroreceptors in glutamatergic terminals by GABA spillover following GABA transporter (GAT) blockade. To test this hypothesis, we applied the whole-cell recording technique to study the effects of SKF 89976A and SNAP 5114 on evoked excitatory postsynaptic currents (eEPSCs) in the presence of gabazine, a GABA(A) receptor antagonist, in rat globus pallidus slice preparations. Under the condition of postsynaptic GABA(B) receptor blockade by the intra-cellular application of N-(2,6-dimethylphenylcarbamoylmethyl)-triethylammonium bromide (OX314), bath application of SKF 89976A (10 µM) or SNAP 5114 (10 µM) decreased the amplitude of eEPSCs, without a significant effect on its holding current and whole cell input resistance. The inhibitory effect of GAT blockade on eEPSCs was blocked by (2S)-3-[[(1S)-1-(3,4-dichlorophenyl)ethyl]amino-2-hydroxypropyl](phenylmethyl)phosphinic acid, a GABA(B) receptor antagonist. The paired-pulse ratio of eEPSCs was increased, whereas the frequency, but not the amplitude, of miniature excitatory postsynaptic currents was reduced in the presence of either GAT blocker, demonstrating a presynaptic effect. These results suggest that synaptically released GABA can inhibit glutamatergic transmission through the activation of presynaptic GABA(B) heteroreceptors following GAT-1 or GAT-3 blockade. In conclusion, our findings demonstrate that presynaptic GABA(B) heteroreceptors in putative glutamatergic subthalamic afferents to the globus pallidus are sensitive to increases in extracellular GABA induced by GAT inactivation, thereby suggesting that GAT blockade represents a potential mechanism by which overactive subthalamopallidal activity may be reduced in parkinsonism.


Asunto(s)
Proteínas Transportadoras de GABA en la Membrana Plasmática/fisiología , Globo Pálido/fisiología , Receptores de GABA-B/fisiología , Transmisión Sináptica/fisiología , Animales , Anisoles/farmacología , Potenciales Postsinápticos Excitadores , Proteínas Transportadoras de GABA en la Membrana Plasmática/efectos de los fármacos , Inhibidores de Recaptación de GABA/farmacología , Antagonistas de Receptores de GABA-B/farmacología , Ácido Glutámico/fisiología , Ácidos Nipecóticos/farmacología , Ácidos Fosfínicos/farmacología , Propanolaminas/farmacología , Ratas , Ratas Sprague-Dawley , Receptores de GABA-B/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos
16.
Front Syst Neurosci ; 5: 63, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21847373

RESUMEN

GABA transporter type 1 and 3 (GAT-1 and GAT-3, respectively) are the two main subtypes of GATs responsible for the regulation of extracellular GABA levels in the central nervous system. These transporters are widely expressed in neuronal (mainly GAT-1) and glial (mainly GAT-3) elements throughout the brain, but most data obtained so far relate to their role in the regulation of GABA(A) receptor-mediated postsynaptic tonic and phasic inhibition in the hippocampus, cerebral cortex and cerebellum. Taking into consideration the key role of GABAergic transmission within basal ganglia networks, and the importance for these systems to be properly balanced to mediate normal basal ganglia function, we analyzed in detail the localization and function of GAT-1 and GAT-3 in the globus pallidus of normal and Parkinsonian animals, in order to further understand the substrate and possible mechanisms by which GABA transporters may regulate basal ganglia outflow, and may become relevant targets for new therapeutic approaches for the treatment of basal ganglia-related disorders. In this review, we describe the general features of GATs in the basal ganglia, and give a detailed account of recent evidence that GAT-1 and GAT-3 regulation can have a major impact on the firing rate and pattern of basal ganglia neurons through pre- and post-synaptic GABA(A)- and GABA(B)-receptor-mediated effects.

17.
Adv Exp Med Biol ; 717: 27-37, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21713664

RESUMEN

Kainate receptors (KARs) are one of the three subtypes of ionotropic glutamate receptors in the CNS. These receptors are widely expressed pre- and postsynaptically throughout the brain. Thus, kainate receptor activation mediates a large variety of pre- and postsynaptic effects on either glutamatergic or GABAergic synaptic transmission. Although ionotropic functions for KAR have been described in multiple brain regions, there is considerable evidence from various CNS regions that KARs activation modulates GABA release through either G-protein dependent metabotropic pathway or secondary activation of G-protein coupled receptors. In the present chapter, we provide further evidence supporting that these two pathways are also involved in the modulation of GABA release in specific basal ganglia nuclei. Because of their more subtle effects on neurotransmisison regulation than other ionotropic glutamate receptors, KARs represent interesting targets for the future development of pharmacotherapy for basal ganglia diseases.


Asunto(s)
Ganglios Basales/metabolismo , Receptores de Ácido Kaínico/metabolismo , Animales , Cuerpo Estriado/metabolismo , Globo Pálido/metabolismo , Humanos , Sustancia Negra/metabolismo
18.
Eur J Neurosci ; 33(8): 1504-18, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21410779

RESUMEN

GABA transporter subtype 1 (GAT-1) and GABA transporter subtype 3 (GAT-3) are the main transporters that regulate inhibitory GABAergic transmission in the mammalian brain through GABA reuptake. In this study, we characterized the ultrastructural localizations and determined the respective roles of these transporters in regulating evoked inhibitory postsynaptic currents (eIPSCs) in globus pallidus (GP) neurons after striatal stimulation. In the young and adult rat GP, GAT-1 was preferentially expressed in unmyelinated axons, whereas GAT-3 was almost exclusively found in glial processes. Except for rare instances of GAT-1 localization, neither of the two transporters was significantly expressed in GABAergic terminals in the rat GP. 1-(4,4-Diphenyl-3-butenyl)-3-piperidinecarboxylic acid hydrochloride (SKF 89976A) (10 µm), a GAT-1 inhibitor, significantly prolonged the decay time, but did not affect the amplitude, of eIPSCs induced by striatal stimulation (15-20 V). On the other hand, the semi-selective GAT-3 inhibitor 1-(2-[tris(4-methoxyphenyl)methoxy]ethyl)-(S)-3-piperidinecarboxylic acid (SNAP 5114) (10 µm) increased the amplitude and prolonged the decay time of eIPSCs. The effects of transporter blockade on the decay time and amplitude of eIPSCs were further increased when both inhibitors were applied together. Furthermore, SKF 89976A or SNAP 5114 blockade also increased the amplitude and frequency of spontaneous IPSCs, but did not affect miniature IPSCs. Significant GABA(A) receptor-mediated tonic currents were induced in the presence of high concentrations of both SKF 89976A (30 µm) and SNAP 5114 (30 µm). In conclusion, these data indicate that GAT-1 and GAT-3 represent different target sites through which GABA reuptake may subserve complementary regulation of GABAergic transmission in the rat GP.


Asunto(s)
Proteínas Transportadoras de GABA en la Membrana Plasmática/metabolismo , Globo Pálido/metabolismo , Animales , Anisoles/farmacología , Bicuculina/farmacología , Estimulación Eléctrica , Femenino , GABAérgicos/farmacología , Antagonistas de Receptores de GABA-A/farmacología , Globo Pálido/citología , Potenciales Postsinápticos Inhibidores/efectos de los fármacos , Masculino , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/ultraestructura , Ácidos Nipecóticos/farmacología , Técnicas de Placa-Clamp , Ratas , Ratas Sprague-Dawley
19.
Eur J Neurosci ; 23(2): 374-86, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16420445

RESUMEN

Kainate receptors (KARs) are widely expressed the basal ganglia. In this study, we used electron microscopic immunocytochemistry and whole-cell recording techniques to examine the localization and function of KARs in the rat globus pallidus (GP). Dendrites were the most common immunoreactive elements, while terminals forming symmetric or asymmetric synapses and unmyelinated axons comprised most of the presynaptic labeling. To determine whether synaptically released glutamate activates KARs, we recorded excitatory postsynaptic currents (EPSCs) in the GP following single-pulse stimulation of the internal capsule. 4-(8-Methyl-9H-1,3-dioxolo[4,5 h]{2,3}benzodiazepine-5-yl)-benzenamine hydrochloride (GYKI 52466, 100 microm), an alpha-amino-3-hydroxyl-5-methyl-4-isoxazole propionic acid (AMPA) receptor antagonist, reduced but did not completely block evoked EPSCs. The remaining EPSC component was mediated through activation of KARs because it was abolished by 6-cyano-7-nitroquinoxaline-2, 3-dione (CNQX), an AMPA/KAR antagonist. The rise time (10-90%) and decay time constant (tau) for those EPSCs were longer than those of AMPA-mediated EPSCs recorded before GYKI 52466 application. KAR activation inhibited EPSCs. This inhibition was associated with a significant increase in paired-pulse facilitation ratio, suggesting a presynaptic action of KAR. KAR inhibition of EPSCs was blocked by the G-protein inhibitor, N-ethylmaleimide (NEM), or the protein kinase C (PKC) inhibitor calphostin C. Our results demonstrate that KAR activation has dual effects on glutamatergic transmission in the rat GP: (1) it mediates small-amplitude EPSCs; and (2) it reduces glutamatergic synaptic transmission through a presynaptic G-protein coupled, PKC-dependent, metabotropic mechanism. These findings provide evidence for the multifarious functions of KARs in regulating synaptic transmission, and open up the possibility for the development of pharmacotherapies to reduce the hyperactive subthalamofugal projection in Parkinson's disease.


Asunto(s)
Dendritas/fisiología , Globo Pálido/citología , Neuronas/fisiología , Receptores de Ácido Kaínico/metabolismo , Sinapsis/fisiología , Transmisión Sináptica/fisiología , Factores de Edad , Animales , Animales Recién Nacidos , Recuento de Células , Dendritas/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Interacciones Farmacológicas , Estimulación Eléctrica/métodos , Inhibidores Enzimáticos/farmacología , Agonistas de Aminoácidos Excitadores/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Potenciales Postsinápticos Excitadores/efectos de la radiación , Globo Pálido/crecimiento & desarrollo , Técnicas In Vitro , Lisina/análogos & derivados , Lisina/metabolismo , Microscopía Inmunoelectrónica/métodos , Técnicas de Placa-Clamp/métodos , Ratas , Ratas Sprague-Dawley , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/efectos de la radiación
20.
Guang Pu Xue Yu Guang Pu Fen Xi ; 23(2): 365-7, 2003 Apr.
Artículo en Chino | MEDLINE | ID: mdl-12961897

RESUMEN

A method for the determination of Au, Pt, Pd and Rh by ICP-AES after preconcentration on a column containing diphenylthiourea immobilized on aluminum oxide was developed. The optimum acidity of solution, amount of adsorbent, elution solution, flow rate and volume of the samples were obtained for the elements studied. The effect of interfering ions on the recovery of the analytes was also investigated. Under the optimum measuring conditions, the recoveries were found to be between 95%-105%. The detection limits of Au, Pd, Pt and Rh was 0.0085, 0.022, 0.015 and 0.022 microgram.g-1, respectively, and the relative standard deviation was lower than 5%. This procedure was applied to the determination of Au, Pd, Pt and Rh in geological samples.


Asunto(s)
Oro/análisis , Paladio/análisis , Platino (Metal)/análisis , Tiourea/análogos & derivados , Óxido de Aluminio , Fenómenos Geológicos , Geología , Rodio/análisis , Espectrofotometría Atómica/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...