Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Anim Sci ; 1012023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-37313716

RESUMEN

The process of myogenesis, which involves the growth and differentiation of muscle cells, is a crucial determinant of meat yield and quality in beef cattle. Essential nutrients, such as vitamins D and A, play vital roles in the development and maintenance of various tissues, including muscle. However, limited knowledge exists regarding the specific effects of vitamins A and D in bovine muscle. Therefore, the aim of this study was to investigate the impact of vitamins A and D treatment on myogenic fusion and differentiation in bovine satellite cells (BSC). BSC were isolated from Korean native beef cattle, specifically from four female cows approximately 30 mo old. These individual cows were used as biological replicates (n = 3 or 4), and we examined the effects of varying concentrations of vitamins A (All-trans retinoic acid; 100 nM) and D (1,25-dihydroxy-vitamin D3; 1 nM, 10 nM, and 100 nM), both individually and in combination, on myoblast fusion and myogenic differentiation during the growth phase (48 h) or differentiation phase (6 d). The results were statistically analyzed using GLM procedure of SAS with Tukey's test and t-tests or one-way ANOVA where appropriate. The findings revealed that vitamin A enhanced the myoblast fusion index, while vitamin D treatment decreased the myoblast fusion index during the growth phase. Furthermore, vitamin A treatment during the differentiation phase promoted terminal differentiation by regulating the expression of myogenic regulatory factors (Myf5, MyoD, MyoG, and Myf6) and inducing myotube hypertrophy compared to the control satellite cells (P < 0.01). In contrast, vitamin D treatment during the differentiation phase enhanced myogenic differentiation by increasing the mRNA expression of MyoG and Myf6 (P < 0.01). Moreover, the combined treatment of vitamins A and D during the growth phase increased myoblast fusion and further promoted myogenic differentiation and hypertrophy of myotubes during the differentiation phase (P < 0.01). These results suggest that vitamin A and D supplementation may have differential effects on muscle development in Korean native beef cattle during the feeding process.


The study investigated the effects of vitamins A and D on the growth and differentiation phases of bovine satellite cells and found that both vitamins have a positive impact on muscle development. Vitamin A promoted myoblast fusion during the growth phase, leading to increased myotube formation, while vitamin D suppressed myoblast fusion during this phase. However, during the differentiation phase, both vitamins enhanced terminal differentiation and hypertrophy. Vitamin A promoted the activation of satellite cells, while vitamin D promoted the expression of genes that enhance myogenesis. The combination treatment of vitamins A and D during the growth phase complemented each other to increase myogenic cell fusion, and during differentiation, promoted terminal differentiation and hypertrophy. These findings suggest that supplementing cattle feed with both vitamins A and D has the potential to enhance muscle development, which would be advantageous for the meat industry.


Asunto(s)
Células Satélite del Músculo Esquelético , Bovinos , Animales , Femenino , Células Satélite del Músculo Esquelético/metabolismo , Colecalciferol/metabolismo , Vitamina A/farmacología , Vitamina A/metabolismo , Diferenciación Celular/fisiología , Vitaminas/metabolismo , Desarrollo de Músculos/genética , Expresión Génica , República de Corea
2.
Anim Nutr ; 10: 372-381, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35949197

RESUMEN

Our previous studies demonstrated that oral vitamin A supplementation during late-stage pregnancy and the neonatal stage enhances birth weight, growth performance, and mRNA expression related to muscle and preadipocyte development in beef cattle. The alcohol dehydrogenase 1C (ADH1C) c.-64T > C genotype also correlated with vitamin A concentration in beef production. This study aimed to investigate the effects of vitamin A supplementation on the muscle development and vitamin A metabolism in weaned beef calves with different ADH1C genotypes. Twenty male calves (90 d of age; initial BW: 89.03 kg [SD 8.60]) were stratified according to ADH1C genotype and vitamin A treatment (duration: 3 months) and randomly assigned to 4 groups with a 2 × 2 factorial arrangement. Vitamin A treatments included the following: control (10,000 IU/kg of as-fed, a. TT type; b. TC type); treatment (40,000 IU/kg of as-fed, c. TT type; and d. TC type). Parameters including BW, FI, blood, longissimus dorsi muscle, and liver status during the experimental period were analyzed using the generalized linear model (GLM) procedure and Tukey's test by SAS 9.4 program. Serum vitamin A was significantly increased (P < 0.05) in the vitamin A treatment group at 4 and 6 months of age. TT type calves showed higher serum vitamin A concentration (P < 0.05) than the TC type calves. Serum triglyceride and non-esterified fatty acid (NEFA) levels increased (P < 0.05) in the treatment group compared with the control at 6 months of age. However, BW, ADG and FI showed no differences between the groups. In addition, mRNA expression in longissimus dorsi muscle revealed upregulation of paired box 7 (PAX7) (P < 0.05) after the vitamin A treatment period based on biopsy results. Both ADH1C and aldehyde dehydrogenase (ALDH) 1A1 mRNA expression was downregulated (P < 0.01) by vitamin A supplementation. The TC type of ADH1C showed higher mRNA expression than the TT type. However, no effect was observed on adipogenic mRNA expression (preadipocyte factor-1 [PREF-1], peroxisome proliferator-activated receptor gamma [PPARγ], fatty acid binding protein 4 [FABP4]) in all groups. Our findings suggest that weaned calves treated with vitamin A may promote the storage of satellite cells by elevating PAX7 gene expression in the muscle. The TC type calves may show increased capacity for vitamin A metabolism, which can be used in genetically customizing feed management to maximize beef production in the calves.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...