RESUMEN
BACKGROUND: Early diagnosis and treatment of chronic pancreatitis (CP) are limited. In this study, St13, a co-chaperone protein, was investigated whether it constituted a novel regulatory target in CP. Meanwhile, we evaluated the value of micro-PET/CT in the early diagnosis of CP. METHODS: Data from healthy control individuals and patients with alcoholic CP (ACP) or non-ACP (nACP) were analysed. PRSS1 transgenic mice (PRSS1Tg) were treated with ethanol or caerulein to mimic the development of ACP or nACP, respectively. Pancreatic lipid metabolite profiling was performed in human and PRSS1Tg model mice. The potential functions of St13 were investigated by crossing PRSS1Tg mice with St13-/- mice via immunoprecipitation and lipid metabolomics. Micro-PET/CT was performed to evaluate pancreatic morphology and fibrosis in CP model. RESULTS: The arachidonic acid (AA) pathway ranked the most commonly dysregulated lipid pathway in ACP and nACP in human and mice. Knockout of St13 exacerbated fatty replacement and fibrosis in CP model. Sdf2l1 was identified as a binding partner of St13 as it stabilizes the IRE1α-XBP1s signalling pathway, which regulates COX-2, an important component in AA metabolism. Micro-PET/CT with 68Ga-FAPI-04 was useful for evaluating pancreatic morphology and fibrosis in CP model mice 2 weeks after modelling. CONCLUSION: St13 is functionally activated in acinar cells and protects against the cellular characteristics of CP by binding Sdf2l1, regulating AA pathway. 68Ga-FAPI-04 PET/CT may be a very valuable approach for the early diagnosis of CP. These findings thus provide novel insights into both diagnosis and treatment of CP.
Asunto(s)
Células Acinares , Endorribonucleasas , Animales , Humanos , Ratones , Células Acinares/metabolismo , Ácido Araquidónico/metabolismo , Proteínas Portadoras/metabolismo , Endorribonucleasas/metabolismo , Fibrosis , Radioisótopos de Galio , Ratones Noqueados , Tomografía Computarizada por Tomografía de Emisión de Positrones , Proteínas Serina-Treonina Quinasas , Tripsina/metabolismo , Proteínas Supresoras de Tumor/metabolismoRESUMEN
Treatment of acute pancreatitis (AP) and chronic pancreatitis (CP) remains problematic due to a lack of knowledge about disease-specific regulatory targets and mechanisms. The purpose of this study was to screen proteins related to endoplasmic reticulum (ER) stress and apoptosis pathways that may play a role in pancreatitis. Human pancreatic tissues including AP, CP, and healthy volunteers were collected during surgery. Humanized PRSS1 (protease serine 1) transgenic (PRSS1Tg) mice were constructed and treated with caerulein to mimic the development of human AP and CP. Potential regulatory proteins in pancreatitis were identified by proteomic screen using pancreatic tissues of PRSS1Tg AP mice. Adenoviral shRNA-mediated knockdown of identified proteins, followed by functional assays was performed to validate their roles. Functional analyses included transmission electron microscopy for ultrastructural analysis; qRT-PCR, western blotting, co-immunoprecipitation, immunohistochemistry, and immunofluorescence for assessment of gene or protein expression, and TUNEL assays for assessment of acinar cell apoptosis. Humanized PRSS1Tg mice could mimic the development of human pancreatic inflammatory diseases. EMC6 and APAF1 were identified as potential regulatory molecules in AP and CP models by proteomic analysis. Both EMC6 and APAF1 regulated apoptosis and inflammatory injury in pancreatic inflammatory diseases. Moreover, APAF1 was regulated by EMC6, induced apoptosis to injure acinar cells and promoted inflammation. In the progression of pancreatitis, EMC6 was activated and then upregulated APAF1 to induce acinar cell apoptosis and inflammatory injury. These findings suggest that EMC6 may be a new therapeutic target for the treatment of pancreatic inflammatory diseases.
Asunto(s)
Factor Apoptótico 1 Activador de Proteasas/metabolismo , Proteínas de la Membrana/metabolismo , Pancreatitis Crónica/metabolismo , Pancreatitis Crónica/patología , Enfermedad Aguda , Animales , Apoptosis/fisiología , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Persona de Mediana Edad , Biología Molecular/métodos , Pancreatitis Crónica/genética , Proteómica/métodosRESUMEN
Background: There is no curative therapy for severe acute pancreatitis (SAP) due to poor understanding of its molecular mechanisms. Endoplasmic reticulum (ER) stress is involved in SAP and increased expression of ATF6 has been detected in SAP patients. Here, we aimed to investigate the role of ATF6 in a preclinical SAP mouse model and characterize its regulatory mechanism. Methods: Pancreatic tissues of healthy and SAP patients were collected during surgery. Humanized PRSS1 transgenic mice were treated with caerulein to mimic the SAP development, which was crossed to an ATF6 knockout mouse line, and pancreatic tissues from the resulting pups were screened by proteomics. Adenovirus-mediated delivery to the pancreas of SAP mice was used for shRNA-based knockdown or overexpression. The potential functions and mechanisms of ATF6 were clarified by immunofluorescence, immunoelectron microscopy, Western blotting, qRT-PCR, ChIP-qPCR and luciferase reporter assay. Results: Increased expression of ATF6 was associated with elevated apoptosis, ER and mitochondrial disorder in pancreatic tissues from SAP patients and PRSS1 mice. Knockout of ATF6 in SAP mice attenuated acinar injury, apoptosis and ER disorder. AIFM2, known as a p53 target gene, was identified as a downstream regulatory partner of ATF6, whose expression was increased in SAP. Functionally, AIFM2 could reestablish the pathological disorder in SAP tissues in the absence of ATF6. p53 expression was also increased in SAP mice, which was downregulated by ATF6 knockout. p53 knockout significantly suppressed acinar apoptosis and injury in SAP model. Mechanistically, ATF6 promoted AIFM2 transcription by binding to p53 and AIFM2 promoters. Conclusion: These results reveal that ATF6/p53/AIFM2 pathway plays a critical role in acinar apoptosis during SAP progression, highlighting novel therapeutic target molecules for SAP.
Asunto(s)
Factor de Transcripción Activador 6/metabolismo , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Mitocondriales/genética , Páncreas/patología , Pancreatitis/genética , Proteína p53 Supresora de Tumor/genética , Células Acinares/patología , Factor de Transcripción Activador 6/genética , Adulto , Animales , Apoptosis/genética , Estudios de Casos y Controles , Ceruletida/administración & dosificación , Ceruletida/toxicidad , Modelos Animales de Enfermedad , Estrés del Retículo Endoplásmico , Femenino , Técnicas de Silenciamiento del Gen , Humanos , Masculino , Ratones Noqueados , Persona de Mediana Edad , Páncreas/citología , Pancreatitis/inducido químicamente , Pancreatitis/patología , Activación Transcripcional , Tripsina/genéticaRESUMEN
OBJECTIVE: Concomitant occurrence of alcoholic chronic pancreatitis (ACP) and alcoholic liver cirrhosis (ALC) is rare with few reported cases. The present study aimed to identify the potential risk factors of chronic pancreatitis (CP) and liver cirrhosis (LC) in ALC patients and ACP patients, respectively. METHODS: A retrospective analysis was performed on 536 patients with CP and 647 ALC patients without CP (Group A). Among the 536 CP patients, 213 ACP cases were divided into two groups: ACP with LC (Group B, n = 52) and ACP without LC (Group C, n = 161). A comparison between Group A and B was carried out to identify the potential risk factors of CP in ALC patients, while Group B and C were compared to determine the independent risk factors of LC in ACP patients. RESULTS: Concomitant occurrence of ACP and ALC accounted for 24.4% (52/213) in this cohort. Significant risk factors for CP in ALC patients included smoking [odds ratio (OR), 2.557; 95% confidence interval (CI): 1.531-5.489; P = 0.003] and multiple bouts of acute pancreatitis (OR, 4.813; 95% CI: 3.625-12.971; P < 0.001). Hepatitis B virus (HBV) infection (OR, 4.237; 95% CI: 1.742-7.629; P = 0.012) was the only independent risk factor associated with LC in ACP patients. CONCLUSION: HBV infection exacerbated liver damage in ACP patients. Alcoholic patients who smoked and suffered from ongoing bouts of acute pancreatitis are prone to develop CP.