Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Biofabrication ; 13(4)2021 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-34551404

RESUMEN

Traumatic brain injury is one of the leading causes of accidental death and disability. The loss of parts in a severely injured brain induces edema, neuronal apoptosis, and neuroinflammation. Recently, stem cell transplantation demonstrated regenerative efficacy in an injured brain. However, the efficacy of current stem cell therapy needs improvement to resolve issues such as low survival of implanted stem cells and low efficacy of differentiation into respective cells. We developed brain-derived decellularized extracellular matrix (BdECM) bioink that is printable and has native brain-like stiffness. This study aimed to fabricate injured cavity-fit scaffold with BdECM bioink and assessed the utility of BdECM bioink for stem cell delivery to a traumatically injured brain. Our BdECM bioink had shear thinning property for three-dimensional (3D)-cell-printing and physical properties and fiber structures comparable to those of the native brain, which is important for tissue integration after implantation. The human neural stem cells (NSCs) (F3 cells) laden with BdECM bioink were found to be fully differentiated to neurons; the levels of markers for mature differentiated neurons were higher than those observed with collagen bioinkin vitro. Moreover, the BdECM bioink demonstrated potential in defect-fit carrier fabrication with 3D cell-printing, based on the rheological properties and shape fidelity of the material. As F3 cell-laden BdECM bioink was transplanted into the motor cortex of a rat brain, high efficacy of differentiation into mature neurons was observed in the transplanted NSCs; notably increased level of MAP2, a marker of neuronal differentiation, was observed. Furthermore, the transplanted-cell bioink suppressed reactive astrogliosis and microglial activation that may impede regeneration of the injured brain. The brain-specific material reported here is favorable for NSC differentiation and suppression of neuroinflammation and is expected to successfully support regeneration of a traumatically injured brain.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Células-Madre Neurales , Animales , Encéfalo , Lesiones Traumáticas del Encéfalo/terapia , Impresión Tridimensional , Ratas , Andamios del Tejido
2.
PLoS One ; 9(9): e105129, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25198726

RESUMEN

Stem cell-based treatment of traumatic brain injury has been limited in its capacity to bring about complete functional recovery, because of the poor survival rate of the implanted stem cells. It is known that biocompatible biomaterials play a critical role in enhancing survival and proliferation of transplanted stem cells via provision of mechanical support. In this study, we noninvasively monitored in vivo behavior of implanted neural stem cells embedded within poly-l-lactic acid (PLLA) scaffold, and showed that they survived over prolonged periods in corticectomized rat model. Corticectomized rat models were established by motor-cortex ablation of the rat. F3 cells expressing enhanced firefly luciferase (F3-effLuc) were established through retroviral infection. The F3-effLuc within PLLA was monitored using IVIS-100 imaging system 7 days after corticectomized surgery. F3-effLuc within PLLA robustly adhered, and gradually increased luciferase signals of F3-effLuc within PLLA were detected in a day dependent manner. The implantation of F3-effLuc cells/PLLA complex into corticectomized rats showed longer-lasting luciferase activity than F3-effLuc cells alone. The bioluminescence signals from the PLLA-encapsulated cells were maintained for 14 days, compared with 8 days for the non-encapsulated cells. Immunostaining results revealed expression of the early neuronal marker, Tuj-1, in PLLA-F3-effLuc cells in the motor-cortex-ablated area. We observed noninvasively that the mechanical support by PLLA scaffold increased the survival of implanted neural stem cells in the corticectomized rat. The image-guided approach easily proved that scaffolds could provide supportive effect to implanted cells, increasing their viability in terms of enhancing therapeutic efficacy of stem-cell therapy.


Asunto(s)
Materiales Biocompatibles , Supervivencia Celular , Corteza Cerebral/cirugía , Células-Madre Neurales/citología , Andamios del Tejido , Animales , Lesiones Encefálicas/patología , Lesiones Encefálicas/terapia , Trasplante de Células , Humanos , Luminiscencia , Microscopía Electrónica de Rastreo , Ratas , Transgenes
3.
EJNMMI Res ; 4(1): 61, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26116122

RESUMEN

BACKGROUND: Three-dimensional (3D) hydrogel-based stem cell therapies contribute to enhanced therapeutic efficacy in treating diseases, and determining the optimal mechanical strength of the hydrogel in vivo is important for therapeutic success. We evaluated the proliferation of human neural stem cells incorporated within in situ-forming hydrogels and compared the effect of hydrogels with different elastic properties in cell/hydrogel-xenografted mice. METHODS: The gelatin-polyethylene glycol-tyramine (GPT) hydrogel was fabricated through enzyme-mediated cross-linking reaction using horseradish peroxidase (HRP) and hydrogen peroxide (H2O2). RESULTS: The F3-effluc encapsulated within a soft 1,800 pascal (Pa) hydrogel and stiff 5,800 Pa hydrogel proliferated vigorously in a 24-well plate until day 8. In vitro and in vivo kinetics of luciferase activity showed a slow time-to-peak after D-luciferin administration in the stiff hydrogel. When in vivo proliferation of F3-effluc was observed up to day 21 in both the hydrogel group and cell-only group, F3-effluc within the soft hydrogel proliferated more vigorously, compared to the cells within the stiff hydrogel. Ki-67-specific immunostaining revealed highly proliferative F3-effluc with compactly distributed cell population inside the 1,800 Pa or 5,800 Pa hydrogel. CONCLUSIONS: We examined the in vivo effectiveness of different elastic types of hydrogels encapsulating viable neural stem cells by successfully monitoring the proliferation of implanted stem cells incorporated within a 3D hydrogel scaffold.

4.
Mol Imaging ; 12(4): 224-34, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23651500

RESUMEN

Transplantation of neural stem cells (NSCs) has been proposed as a treatment for Parkinson disease (PD). The aim of this study was to monitor the viability of transplanted NSCs expressing the enhanced luciferase gene in a mouse model of PD in vivo. The PD animal model was induced by unilateral injection of 6-hydroxydopamine (6-OHDA). The behavioral test using apomorphine-induced rotation and positron emission tomography with [18F]N-(3-fluoropropyl)-2'-carbomethoxy-3'-(4-iodophenyl)nortropane ([18F]FP-CIT) were conducted. HB1.F3 cells transduced with an enhanced firefly luciferase retroviral vector (F3-effLuc cells) were transplanted into the right striatum. In vivo bioluminescence imaging was repeated for 2 weeks. Four weeks after transplantation, [18F]FP-CIT PET and the rotation test were repeated. All 6-OHDA-injected mice showed markedly decreased [18F]FP-CIT uptake in the right striatum. Transplanted F3-effLuc cells were visualized on the right side of the brain in all mice by bioluminescence imaging. The bioluminescence intensity of the transplanted F3-effLuc cells gradually decreased until it was undetectable by 10 days. The behavioral test showed that stem cell transplantation attenuated the motor symptoms of PD. No significant change was found in [18F]FP-CIT imaging after cell transplantation. We successfully established an in vivo bioluminescence imaging system for the detection of transplanted NSCs in a mouse model of PD. NSC transplantation induced behavioral improvement in PD model mice.


Asunto(s)
Células-Madre Neurales/citología , Oxidopamina/toxicidad , Enfermedad de Parkinson/diagnóstico , Animales , Inmunohistoquímica , Mediciones Luminiscentes , Masculino , Ratones , Ratones Endogámicos C57BL , Enfermedad de Parkinson/terapia , Trasplante de Células Madre
5.
Int J Syst Evol Microbiol ; 58(Pt 1): 164-7, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18175703

RESUMEN

A Gram-negative, strictly aerobic, marine bacterium, designated strain CL-YJ9(T), was isolated from sediment closely associated with the roots of a plant (Suaeda japonica) inhabiting a coastal tidal flat. Cells of the novel strain were straight and rod-shaped and were motile by means of monopolar flagella. A phylogenetic analysis based on 16S rRNA gene sequences revealed that strain CL-YJ9(T) belongs to the genus Marinobacterium and was most closely related to Marinobacterium halophilum mano11(T) (94.1% sequence similarity) and to other members of the genus Marinobacterium (92.5-93.7% sequence similarity). The strain grew with 1-5% NaCl (optimum, 3%) and at 5-30 degrees C (optimum, approx. 25 degrees C) and pH 6.0-9.0 (optimum, pH 7.0). The predominant cellular fatty acids were summed feature 3 (C(16:1)omega7c and/or iso-C(15:0) 2-OH, 40.3%), C(18:1)omega7c (26.6%), C(16:0) (16.6%) and C(10:0) 3-OH (7.1%). The major isoprenoid quinone was Q-8. The G+C content of the genomic DNA was 61 mol%. On the basis of the data from this polyphasic study, strain CL-YJ9(T) belongs to the genus Marinobacterium but is distinguishable from the recognized species. Strain CL-YJ9(T) therefore represents a novel species, for which the name Marinobacterium rhizophilum sp. nov. is proposed. The type strain is CL-YJ9(T) (=KCCM 42386(T) =DSM 18822(T)).


Asunto(s)
Chenopodiaceae/microbiología , Gammaproteobacteria/clasificación , Sedimentos Geológicos/microbiología , Raíces de Plantas/microbiología , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/análisis , Ácidos Grasos/análisis , Gammaproteobacteria/genética , Gammaproteobacteria/aislamiento & purificación , Gammaproteobacteria/fisiología , Genes de ARNr , Datos de Secuencia Molecular , Fenotipo , Filogenia , ARN Ribosómico 16S/genética , Agua de Mar/microbiología , Análisis de Secuencia de ADN , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA