Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39387120

RESUMEN

BACKGROUND: Atherosclerosis is the most common cause of cardiovascular diseases. Clinical studies indicate that loss-of-function ASGR1 (asialoglycoprotein receptor 1) is significantly associated with lower plasma cholesterol levels and reduces cardiovascular disease risk. However, the effect of ASGR1 on atherosclerosis remains incompletely understood; whether inhibition of ASGR1 causes liver injury remains controversial. Here, we comprehensively investigated the effects and the underlying molecular mechanisms of ASGR1 deficiency and overexpression on atherosclerosis and liver injury in mice. METHODS: We engineered Asgr1 knockout mice (Asgr1-/-), Asgr1 and ApoE double-knockout mice (Asgr1-/-ApoE-/-), and ASGR1-overexpressing mice on an ApoE-/- background and then fed them different diets to assess the role of ASGR1 in atherosclerosis and liver injury. RESULTS: After being fed a Western diet for 12 weeks, Asgr1-/-ApoE-/- mice exhibited significantly decreased atherosclerotic lesion areas in the aorta and aortic root sections, reduced plasma VLDL (very-low-density lipoprotein) cholesterol and LDL (low-density lipoprotein) cholesterol levels, decreased VLDL production, and increased fecal cholesterol contents. Conversely, ASGR1 overexpression in ApoE-/- mice increased atherosclerotic lesions in the aorta and aortic root sections, augmented plasma VLDL cholesterol and LDL cholesterol levels and VLDL production, and decreased fecal cholesterol contents. Mechanistically, ASGR1 deficiency reduced VLDL production by inhibiting the expression of MTTP (microsomal triglyceride transfer protein) and ANGPTL3 (angiopoietin-like protein 3)/ANGPTL8 (angiopoietin-like protein 8) but increasing LPL (lipoprotein lipase) activity, increased LDL uptake by increasing LDLR (LDL receptor) expression, and promoted cholesterol efflux through increasing expression of LXRα (liver X receptor-α), ABCA1 (ATP-binding cassette subfamily A member 1), ABCG5 (ATP-binding cassette subfamily G member 5), and CYP7A1 (cytochrome P450 family 7 subfamily A member 1). These underlying alterations were confirmed in ASGR1-overexpressing ApoE-/- mice. In addition, ASGR1 deficiency exacerbated liver injury in Western diet-induced Asgr1-/-ApoE-/- mice and high-fat diet-induced but not normal laboratory diet-induced and high-fat and high-cholesterol diet-induced Asgr1-/- mice, while its overexpression mitigated liver injury in Western diet-induced ASGR1-overexpressing ApoE-/- mice. CONCLUSIONS: Inhibition of ASGR1 inhibits atherosclerosis in Western diet-fed ApoE-/- mice, suggesting that inhibiting ASGR1 may serve as a novel therapeutic strategy to treat atherosclerosis and cardiovascular diseases.

2.
Int J Biol Sci ; 20(10): 3725-3741, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39113703

RESUMEN

The probability of cardiovascular events has been reported lower in rheumatoid arthritis (RA) patients treated with leflunomide. However, the anti-atherosclerotic and cardiovascular protective effects and metabolism of leflunomide are not explored. In this study, we assessed the potential benefits of leflunomide on atherosclerosis and revealed the underlying mechanism. ApoE-/- mice were fed a western diet (WD) alone or supplemented with leflunomide (20 mg/kg, oral gavage, once per day) for 12 weeks. Samples of the aorta, heart, liver, serum, and macrophages were collected. We found that leflunomide significantly reduced lesion size in both en-face aortas and aortic root in WD-fed ApoE-/- mice. Leflunomide also obviously improved dyslipidemia, reduced hepatic lipid content, and improved disorders of glucose and lipid metabolism in vivo. RNA-Seq results showed that leflunomide effectively regulated the genes' expression involved in the lipid metabolism pathway. Importantly, leflunomide significantly increased the phosphorylation levels of AMPKα and acetyl-CoA carboxylase (ACC) in vivo. Furthermore, leflunomide and its active metabolite teriflunomide suppressed lipid accumulation in free fatty acid (FFA)-induced AML12 cells and improved endothelial dysfunction in palmitic acid (PA)-induced HUVECs through activating AMPK signaling and inhibiting dihydroorotate dehydrogenase (DHODH) signaling pathway. We present evidence that leflunomide and teriflunomide ameliorate atherosclerosis by regulating lipid metabolism and endothelial dysfunction. Our findings suggest a promising use of antirheumatic small-molecule drugs leflunomide and teriflunomide for the treatment of atherosclerosis and related cardiovascular diseases (CVDs).


Asunto(s)
Antirreumáticos , Aterosclerosis , Dihidroorotato Deshidrogenasa , Leflunamida , Metabolismo de los Lípidos , Transducción de Señal , Animales , Leflunamida/uso terapéutico , Leflunamida/farmacología , Aterosclerosis/metabolismo , Aterosclerosis/tratamiento farmacológico , Ratones , Metabolismo de los Lípidos/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Dihidroorotato Deshidrogenasa/metabolismo , Antirreumáticos/farmacología , Antirreumáticos/uso terapéutico , Humanos , Proteínas Quinasas Activadas por AMP/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , Masculino , Ratones Endogámicos C57BL , Células Endoteliales de la Vena Umbilical Humana/metabolismo
3.
Cell Death Dis ; 15(4): 283, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38649362

RESUMEN

Acute liver failure (ALF) is a deadly illness due to insufficient detoxification in liver induced by drugs, toxins, and other etiologies, and the effective treatment for ALF is very limited. Among the drug-induced ALF, acetaminophen (APAP) overdose is the most common cause. However, the molecular mechanisms underlying APAP hepatoxicity remain incompletely understood. Sirtuin 6 (Sirt6) is a stress responsive protein deacetylase and plays an important role in regulation of DNA repair, genomic stability, oxidative stress, and inflammation. Here, we report that genetic and pharmacological activation of Sirt6 protects against ALF in mice. We first observed that Sirt6 expression was significantly reduced in the liver tissues of human patients with ALF and mice treated with an overdose of APAP. Then we developed an inducible Sirt6 transgenic mice for Cre-mediated overexpression of the human Sirt6 gene in systemic (Sirt6-Tg) and hepatic-specific (Sirt6-HepTg) manners. Both Sirt6-Tg mice and Sirt6-HepTg mice exhibited the significant protection against APAP hepatoxicity. In contrast, hepatic-specific Sirt6 knockout mice exaggerated APAP-induced liver damages. Mechanistically, Sirt6 attenuated APAP-induced hepatocyte necrosis and apoptosis through downregulation of oxidative stress, inflammation, the stress-activated kinase JNK activation, and apoptotic caspase activation. Moreover, Sirt6 negatively modulated the level and activity of poly (ADP-ribose) polymerase 1 (PARP1) in APAP-treated mouse liver tissues. Importantly, the specific Sirt6 activator MDL-800 exhibited better therapeutic potential for APAP hepatoxicity than the current drug acetylcysteine. Furthermore, in the model of bile duct ligation induced ALF, hepatic Sirt6-KO exacerbated, but Sirt6-HepTg mitigated liver damage. Collectively, our results demonstrate that Sirt6 protects against ALF and suggest that targeting Sirt6 activation could be a new therapeutic strategy to alleviate ALF.


Asunto(s)
Acetaminofén , Hepatocitos , Fallo Hepático Agudo , Sirtuinas , Animales , Humanos , Masculino , Ratones , Acetaminofén/efectos adversos , Apoptosis/efectos de los fármacos , Hepatocitos/metabolismo , Hepatocitos/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Hígado/efectos de los fármacos , Fallo Hepático Agudo/metabolismo , Fallo Hepático Agudo/inducido químicamente , Fallo Hepático Agudo/patología , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Estrés Oxidativo/efectos de los fármacos , Sirtuinas/metabolismo , Sirtuinas/genética
4.
Inflammation ; 47(1): 323-332, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37819455

RESUMEN

Inflammatory response in the pulmonary endothelium drives the pathogenesis of acute lung injury and sepsis. Sirtuin 6 (SIRT6), a member of class III NAD+-dependent deacetylases belonging to the sirtuin family, regulates senescence, metabolism, and inflammation and extends lifespan in mice and model organisms. However, the role of SIRT6 in pulmonary endothelial inflammation is unknown. Thus, we hypothesized that SIRT6 suppresses inflammatory response in human lung microvascular cells (HLMEC) and ensues monocyte adhesion to endothelial cells. Primary HLMECs were treated with control or SIRT6 adenovirus or SIRT6 agonist, with or without lipopolysaccharide (LPS) treatment. We observed that treatment with LPS did not affect the protein expression of SIRT6 in HLMECs. However, adenovirus-mediated SIRT6 overexpression attenuated LPS-induced VCAM1 gene and protein expression, followed by decreased monocyte adhesion to endothelial cells. Similarly, activation of SIRT6 by a recently reported SIRT6 activator UBCS039, but not the regioisomer negative control compound UBCS060, ameliorated LPS-induced VCAM1 mRNA and protein expression as well as monocyte adhesion. Moreover, luciferase assay revealed that SIRT6 adenovirus decreased the activity of NF-κB, the master regulator of vascular inflammation. Taken together, these results indicate that molecular and pharmacological activation of SIRT6 protects against lung microvascular inflammation via suppressing NF-κB activation, implicating the therapeutic potential of the SIRT6 activators for lung disorders associated with microvascular inflammation.


Asunto(s)
Neumonía , Sirtuinas , Humanos , Ratones , Animales , FN-kappa B/metabolismo , Lipopolisacáridos/farmacología , Células Endoteliales/metabolismo , Inflamación/inducido químicamente , Inflamación/prevención & control , Inflamación/metabolismo , Neumonía/inducido químicamente , Neumonía/prevención & control , Neumonía/metabolismo , Pulmón/metabolismo , Endotelio Vascular/metabolismo
5.
Eur Heart J ; 44(20): 1818-1833, 2023 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-36469488

RESUMEN

AIMS: Variants of the junctional cadherin 5 associated (JCAD) locus associate with acute coronary syndromes. JCAD promotes experimental atherosclerosis through the large tumor suppressor kinase 2 (LATS2)/Hippo pathway. This study investigates the role of JCAD in arterial thrombosis. METHODS AND RESULTS: JCAD knockout (Jcad-/-) mice underwent photochemically induced endothelial injury to trigger arterial thrombosis. Primary human aortic endothelial cells (HAECs) treated with JCAD small interfering RNA (siJCAD), LATS2 small interfering RNA (siLATS2) or control siRNA (siSCR) were employed for in vitro assays. Plasma JCAD was measured in patients with chronic coronary syndrome or ST-elevation myocardial infarction (STEMI). Jcad-/- mice displayed reduced thrombogenicity as reflected by delayed time to carotid occlusion. Mechanisms include reduced activation of the coagulation cascade [reduced tissue factor (TF) expression and activity] and increased fibrinolysis [higher thrombus embolization episodes and D-dimer levels, reduced vascular plasminogen activator inhibitor (PAI)-1 expression]. In vitro, JCAD silencing inhibited TF and PAI-1 expression in HAECs. JCAD-silenced HAECs (siJCAD) displayed increased levels of LATS2 kinase. Yet, double JCAD and LATS2 silencing did not restore the control phenotype. si-JCAD HAECs showed increased levels of phosphoinositide 3-kinases (PI3K)/ proteinkinase B (Akt) activation, known to downregulate procoagulant expression. The PI3K/Akt pathway inhibitor-wortmannin-prevented the effect of JCAD silencing on TF and PAI-1, indicating a causative role. Also, co-immunoprecipitation unveiled a direct interaction between JCAD and Akt. Confirming in vitro findings, PI3K/Akt and P-yes-associated protein levels were higher in Jcad-/- animals. Lastly, as compared with chronic coronary syndrome, STEMI patients showed higher plasma JCAD, which notably correlated positively with both TF and PAI-1 levels. CONCLUSIONS: JCAD promotes arterial thrombosis by modulating coagulation and fibrinolysis. Herein, reported translational data suggest JCAD as a potential therapeutic target for atherothrombosis.


Asunto(s)
Infarto del Miocardio con Elevación del ST , Trombosis , Animales , Humanos , Ratones , Células Endoteliales/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidor 1 de Activador Plasminogénico/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Interferente Pequeño , Transducción de Señal , Infarto del Miocardio con Elevación del ST/metabolismo , Trombosis/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
6.
Circ Res ; 131(11): 926-943, 2022 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-36278398

RESUMEN

BACKGROUND: Heart failure with preserved ejection fraction (HFpEF) is a growing health problem without effective therapies. Epidemiological studies indicate that diabetes is a strong risk factor for HFpEF, and about 45% of patients with HFpEF are suffering from diabetes, yet the underlying mechanisms remain elusive. METHODS: Using a combination of echocardiography, hemodynamics, RNA-sequencing, molecular biology, in vitro and in vivo approaches, we investigated the roles of SIRT6 (sirtuin 6) in regulation of endothelial fatty acid (FA) transport and HFpEF in diabetes. RESULTS: We first observed that endothelial SIRT6 expression was markedly diminished in cardiac tissues from heart failure patients with diabetes. We then established an experimental mouse model of HFpEF in diabetes induced by a combination of the long-term high-fat diet feeding and a low-dose streptozocin challenge. We also generated a unique humanized SIRT6 transgenic mouse model, in which a single copy of human SIRT6 transgene was engineered at mouse Rosa26 locus and conditionally induced with the Cre-loxP technology. We found that genetically restoring endothelial SIRT6 expression in the diabetic mice ameliorated diastolic dysfunction concurrently with decreased cardiac lipid accumulation. SIRT6 gain- or loss-of-function studies showed that SIRT6 downregulated endothelial FA uptake. Mechanistically, SIRT6 suppressed endothelial expression of PPARγ through SIRT6-dependent deacetylation of histone H3 lysine 9 around PPARγ promoter region; and PPARγ reduction mediated SIRT6-dependent inhibition of endothelial FA uptake. Importantly, oral administration of small molecule SIRT6 activator MDL-800 to diabetic mice mitigated cardiac lipid accumulation and diastolic dysfunction. CONCLUSIONS: The impairment of endothelial SIRT6 expression links diabetes to HFpEF through the alteration of FA transport across the endothelial barrier. Genetic and pharmacological strategies that restored endothelial SIRT6 function in mice with diabetes alleviated experimental HFpEF by limiting FA uptake and improving cardiac metabolism, thus warranting further clinical evaluation.


Asunto(s)
Diabetes Mellitus Experimental , Insuficiencia Cardíaca , Sirtuinas , Humanos , Ratones , Animales , Volumen Sistólico/fisiología , Insuficiencia Cardíaca/metabolismo , PPAR gamma , Modelos Animales de Enfermedad , Sirtuinas/genética , Lípidos
7.
Int J Biol Sci ; 18(5): 2146-2162, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35342347

RESUMEN

Acetaminophen overdose is a leading cause of acute live failure worldwide. N-acetylcysteine (NAC), as the only antidote, is limited due to its narrow therapeutic time window. Here we demonstrated that Urolithin A (UA), a metabolite of ellagitannin natural products in the gastrointestinal flora, protected against acetaminophen-induced liver injury (AILI) and is superior to NAC in terms of dosage and therapeutical time window. Transcriptomics assay revealed that UA promotes mitophagy and activated Nrf2/ARE signaling in the liver. Consistent with that, mitophagy and Nrf2/ARE signaling were activated, with less oxidative stress in UA-treated liver. Subsequently, molecular docking and dynamics simulation study revealed a binding mode between UA and Nrf-2/Keap1 including the hydrogen-bonding network among oxygen atoms in UA with the Nrf-2/Keap1 residues Arg 415, Ser 508 and Ser 602, which in turn trigger Nrf2 nuclear translocation, subsequently leading to activation of Nrf-2 target genes (HO-1, NQO1). Of note, mitophagy inhibition failed to prevent the protection of UA against AILI, which instead was compromised with Nrf2 gene silencing both in vivo and in vitro. Collectively, our data indicate that UA alleviated acetaminophen-induced oxidative stress and hepatic necrosis via activating Nrf2/ARE signaling pathway, highlighting a therapeutical potential of UA for AILI.


Asunto(s)
Acetaminofén , Enfermedad Hepática Inducida por Sustancias y Drogas , Cumarinas , Animales , Ratones , Acetaminofén/toxicidad , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Cumarinas/farmacología , Proteína 1 Asociada A ECH Tipo Kelch/genética , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Hígado/metabolismo , Simulación del Acoplamiento Molecular , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo
8.
Sci Rep ; 10(1): 20493, 2020 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-33235311

RESUMEN

Angiogenesis is a physiological process for the formation of new blood vessels from the pre-existing vessels and it has a vital role in the survival and growth of neoplasms. During tumor angiogenesis, the activation of the gene transcriptions in vascular endothelial cells (ECs) plays an essential role in the promotion of EC proliferation, migration, and vascular network development. However, the molecular mechanisms underlying transcriptional regulation of EC and tumor angiogenesis remains to be fully elucidated. Here we report that the transcription factor Yin Yang 1 (YY1) in ECs is critically involved in tumor angiogenesis. First, we utilized a tamoxifen-inducible EC-specific YY1 deficient mouse model and showed that YY1 deletion in ECs inhibited the tumor growth and tumor angiogenesis. Using the in vivo matrigel plug assay, we then found that EC-specific YY1 ablation inhibited growth factor-induced angiogenesis. Furthermore, vascular endothelial growth factor (VEGF)-induced EC migration was diminished in YY1-depleted human umbilical vein endothelial cells (HUVECs). Finally, a rescue experiment revealed that YY1-regulated BMP6 expression in ECs was involved in EC migration. Collectively, our results demonstrate that endothelial YY1 has a crucial role in tumor angiogenesis and suggest that targeting endothelial YY1 could be a potential therapeutic strategy for cancer treatment.


Asunto(s)
Células Endoteliales/metabolismo , Melanoma/irrigación sanguínea , Melanoma/patología , Neovascularización Patológica/metabolismo , Factor de Transcripción YY1/metabolismo , Animales , Movimiento Celular , Proliferación Celular , Colágeno/metabolismo , Combinación de Medicamentos , Células Endoteliales/patología , Eliminación de Gen , Regulación Neoplásica de la Expresión Génica , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Laminina/metabolismo , Melanoma/genética , Ratones Noqueados , Neovascularización Patológica/patología , Proteoglicanos/metabolismo , ARN Interferente Pequeño/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor de Transcripción YY1/genética
9.
Proc Natl Acad Sci U S A ; 117(9): 4792-4801, 2020 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-32075915

RESUMEN

Angiogenesis, the formation of new blood vessels, is tightly regulated by gene transcriptional programs. Yin Ying 1 (YY1) is a ubiquitously distributed transcription factor with diverse and complex biological functions; however, little is known about the cell-type-specific role of YY1 in vascular development and angiogenesis. Here we report that endothelial cell (EC)-specific YY1 deletion in mice led to embryonic lethality as a result of abnormal angiogenesis and vascular defects. Tamoxifen-inducible EC-specific YY1 knockout (YY1iΔEC ) mice exhibited a scarcity of retinal sprouting angiogenesis with fewer endothelial tip cells. YY1iΔEC mice also displayed severe impairment of retinal vessel maturation. In an ex vivo mouse aortic ring assay and a human EC culture system, YY1 depletion impaired endothelial sprouting and migration. Mechanistically, YY1 functions as a repressor protein of Notch signaling that controls EC tip-stalk fate determination. YY1 deficiency enhanced Notch-dependent gene expression and reduced tip cell formation. Specifically, YY1 bound to the N-terminal domain of RBPJ (recombination signal binding protein for Ig Kappa J region) and competed with the Notch coactivator MAML1 (mastermind-like protein 1) for binding to RBPJ, thereby impairing the NICD (intracellular domain of the Notch protein)/MAML1/RBPJ complex formation. Our study reveals an essential role of endothelial YY1 in controlling sprouting angiogenesis through directly interacting with RBPJ and forming a YY1-RBPJ nuclear repression complex.


Asunto(s)
Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/metabolismo , Morfogénesis/fisiología , Neovascularización Patológica/metabolismo , Factor de Transcripción YY1/metabolismo , Animales , Proteínas Portadoras/metabolismo , Diferenciación Celular , Células Endoteliales/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Humanos , Masculino , Ratones/embriología , Ratones Endogámicos C57BL , Ratones Noqueados , Neovascularización Patológica/genética , Neovascularización Patológica/patología , Neovascularización Fisiológica/genética , Neovascularización Fisiológica/fisiología , Proteínas Nucleares , Unión Proteica , Receptores Notch/metabolismo , Vasos Retinianos/metabolismo , Transducción de Señal , Factores de Transcripción , Factor de Transcripción YY1/genética
10.
Hepatology ; 72(5): 1717-1734, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32048304

RESUMEN

BACKGROUND AND AIMS: Liver fibrosis (LF) is a central pathological process that occurs in most types of chronic liver diseases. Advanced LF causes cirrhosis, hepatocellular carcinoma, and liver failure. However, the exact molecular mechanisms underlying the initiation and progression of LF remain largely unknown. APPROACH AND RESULTS: This study was designed to investigate the role of protein kinase D3 (PKD3; gene name Prkd3) in the regulation of liver homeostasis. We generated global Prkd3 knockout (Prkd3-/- ) mice and myeloid-cell-specific Prkd3 knockout (Prkd3∆LysM ) mice, and we found that both Prkd3-/- mice and Prkd3∆LysM mice displayed spontaneous LF. PKD3 deficiency also aggravated CCl4 -induced LF. PKD3 is highly expressed in hepatic macrophages (HMs), and PKD3 deficiency skewed macrophage polarization toward a profibrotic phenotype. Activated profibrotic macrophages produced transforming growth factor beta that, in turn, activates hepatic stellate cells to become matrix-producing myofibroblasts. Moreover, PKD3 deficiency decreased the phosphatase activity of SH2-containing protein tyrosine phosphatase-1 (a bona-fide PKD3 substrate), resulting in sustained signal transducer and activator of transcription 6 activation in macrophages. In addition, we observed that PKD3 expression in HMs was down-regulated in cirrhotic human liver tissues. CONCLUSIONS: PKD3 deletion in mice drives LF through the profibrotic macrophage activation.


Asunto(s)
Cirrosis Hepática Experimental/patología , Cirrosis Hepática/patología , Proteína Quinasa C/deficiencia , Animales , Tetracloruro de Carbono/toxicidad , Células Cultivadas , Progresión de la Enfermedad , Células Estrelladas Hepáticas/metabolismo , Humanos , Hígado/citología , Hígado/patología , Cirrosis Hepática Experimental/inducido químicamente , Cirrosis Hepática Experimental/diagnóstico , Cirrosis Hepática Experimental/genética , Macrófagos/metabolismo , Ratones , Ratones Noqueados , Miofibroblastos/metabolismo , Cultivo Primario de Células , Proteína Quinasa C/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 6/metabolismo , Índice de Severidad de la Enfermedad , Análisis de Matrices Tisulares , Factor de Crecimiento Transformador beta/metabolismo
11.
Biochem Biophys Res Commun ; 521(2): 279-284, 2020 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-31668369

RESUMEN

Serum response factor (SRF), a key transcription factor, plays an important role in regulating cell functions such as proliferation and differentiation. Most proteins are unstable, and protein stability is regulated through the ubiquitin-proteasome system (UPS) or the autophagy lysosome pathway (ALP). Whether SRF is degraded and what mechanisms control SRF protein stability remain unexplored. Western blot analyses of cells treated with cycloheximide (CHX), a protein synthesis inhibitor, showed that SRF was degraded in a time-dependent manner. Moreover, we observed that SRF undergoes autophagy-dependent destruction, which is accelerated by serum deprivation. Through bioinformatics screening, we found that SRF contains the GSK3ß phosphorylation motif (T/SPPXS): SPDSPPRSDPT, which is conserved from zebrafish to humans. Serum deprivation stimulated GSK3ß activation that then potentiates SRF degradation through the autophagy lysosome pathway. Since SRF is important for numerous cellular activities, our results suggest that the autophagy-dependent SRF degradation pathway may provide a new avenue to modulate SRF-mediated cell functions.


Asunto(s)
Autofagia , Factor de Respuesta Sérica/química , Animales , Células COS , Células Cultivadas , Chlorocebus aethiops , Medio de Cultivo Libre de Suero/farmacología , Cicloheximida/farmacología , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Humanos , Lisosomas/metabolismo , Estabilidad Proteica , Ratas , Factor de Respuesta Sérica/metabolismo
12.
Eur Heart J ; 40(29): 2398-2408, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31539914

RESUMEN

AIMS: Recent genome-wide association studies (GWAS) have identified that the JCAD locus is associated with risk of coronary artery disease (CAD) and myocardial infarction (MI). However, the mechanisms whereby candidate gene JCAD confers disease risk remain unclear. We addressed whether and how JCAD affects the development of atherosclerosis, the common cause of CAD. METHODS AND RESULTS: By mining data in the Genotype-Tissue Expression (GTEx) database, we found that CAD-associated risk variants at the JCAD locus are linked to increased JCAD gene expression in human arteries, implicating JCAD as a candidate causal CAD gene. We therefore generated global and endothelial cell (EC) specific-JCAD knockout mice, and observed that JCAD deficiency attenuated high fat diet-induced atherosclerosis in ApoE-deficient mice. JCAD-deficiency in mice also improved endothelium-dependent relaxation. Genome-wide transcriptional profiling of JCAD-depleted human coronary artery ECs showed that JCAD depletion inhibited the activation of YAP/TAZ pathway, and the expression of downstream pro-atherogenic genes, including CTGF and Cyr61. As a result, JCAD-deficient ECs attracted fewer monocytes in response to lipopolysaccharide (LPS) stimulation. Moreover, JCAD expression in ECs was decreased under unidirectional laminar flow in vitro and in vivo. Proteomics studies suggest that JCAD regulates YAP/TAZ activation by interacting with actin-binding protein TRIOBP, thereby stabilizing stress fiber formation. Finally, we observed that endothelial JCAD expression was increased in mouse and human atherosclerotic plaques. CONCLUSION: The present study demonstrates that the GWAS-identified CAD risk gene JCAD promotes endothelial dysfunction and atherosclerosis, thus highlighting the possibility of new therapeutic strategies for CAD by targeting JCAD.


Asunto(s)
Aterosclerosis/genética , Moléculas de Adhesión Celular/genética , Enfermedad de la Arteria Coronaria/genética , Endotelio Vascular/fisiopatología , Predisposición Genética a la Enfermedad/genética , Animales , Apolipoproteínas E/genética , Dieta Occidental/efectos adversos , Endotelio Vascular/metabolismo , Femenino , Genes/genética , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Transducción de Señal
13.
Biochem Biophys Res Commun ; 514(3): 913-918, 2019 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-31084931

RESUMEN

Liver fibrosis is a common consequence of various chronic hepatitis and liver injuries. The myofibroblasts, through the accumulation of extracellular matrix (ECM) proteins, are closely associated with the progression of liver fibrosis. However, the molecular mechanisms underlying transcriptional regulation of fibrogenic genes and ECM proteins in myofibroblasts remain largely unknown. Using tamoxifen inducible myofibroblast-specific Cre-expressing mouse lines with selective deletion of the transcription factor Yin Yang 1 (YY1), here we show that YY1 deletion in myofibroblasts mitigates carbon tetrachloride-induced liver fibrosis. This protective effect of YY1 ablation on liver fibrosis was accompanied with reduced expression of profibrogenic genes and ECM proteins, including TNF-α, TGF-ß, PDGF, IL-6, α-SMA and Col1α1 in liver tissues from YY1 mutant mice. Moreover, using the human hepatic stellate cell (HSC) line LX-2, we found that knockdown of YY1 in myofibroblasts by siRNA treatment diminished myofibroblast proliferation, α-SMA expression, and collagen deposition. Collectively, our findings reveal a specific role of YY1 in hepatic myofibroblasts and suggest a new therapeutic strategy for hepatic fibrosis-associated liver diseases.


Asunto(s)
Cirrosis Hepática/patología , Miofibroblastos/patología , Factor de Transcripción YY1/genética , Animales , Línea Celular , Eliminación de Gen , Humanos , Cirrosis Hepática/genética , Ratones , Ratones Endogámicos C57BL , Miofibroblastos/metabolismo , Interferencia de ARN
14.
Trends Biochem Sci ; 44(7): 561-564, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31036409

RESUMEN

Hutchinson-Gilford progeria syndrome (HGPS) is an ultrarare and fatal disease with features of premature aging and cardiovascular diseases (atherosclerosis, myocardial infarction, and stroke). Several landmark studies in 2018-2019 have revealed novel mechanisms underlying cardiovascular pathologies in HGPS, and implicate future potential therapies for HGPS, and possibly physiological aging.


Asunto(s)
Enfermedades Cardiovasculares/complicaciones , Enfermedades Cardiovasculares/tratamiento farmacológico , Piperidinas/uso terapéutico , Progeria/complicaciones , Progeria/tratamiento farmacológico , Piridinas/uso terapéutico , Enfermedades Cardiovasculares/patología , Humanos , Progeria/patología
15.
Trends Pharmacol Sci ; 40(4): 253-266, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30826122

RESUMEN

Atherosclerosis is the primary underlying cause of cardiovascular disease which preferentially develops at arterial regions exposed to disturbed flow (DF), but much less at regions of unidirectional laminar flow (UF). Recent studies have demonstrated that DF and UF differentially regulate important aspects of endothelial function, such as vascular inflammation, oxidative stress, vascular tone, cell proliferation, senescence, mitochondrial function, and glucose metabolism. DF and UF regulate vascular pathophysiology via differential regulation of mechanosensitive transcription factors (MSTFs) (KLF2, KLF4, NRF2, YAP/TAZ/TEAD, HIF-1α, NF-κB, AP-1, and others). Emerging studies show that MSTFs represent promising therapeutic targets for the prevention and treatment of atherosclerosis. We present here a comprehensive overview of the role of MSTFs in atherosclerosis, and highlight future directions for developing novel therapeutic agents by targeting MSTFs.


Asunto(s)
Aterosclerosis/tratamiento farmacológico , Terapia Molecular Dirigida , Factores de Transcripción/metabolismo , Animales , Aterosclerosis/fisiopatología , Desarrollo de Medicamentos/métodos , Humanos , Factor 4 Similar a Kruppel , Mecanotransducción Celular/fisiología
16.
Sci Rep ; 9(1): 1458, 2019 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-30728372

RESUMEN

Endothelial dysfunction is the common molecular basis of multiple human diseases, such as atherosclerosis, diabetes, hypertension, and acute lung injury. Therefore, primary isolation of high-purity endothelial cells (ECs) is crucial to study the mechanisms of endothelial function and disease pathogenesis. Mouse lung ECs (MLECs) are widely used in vascular biology and lung cell biology studies such as pulmonary inflammation, angiogenesis, vessel permeability, leukocyte/EC interaction, nitric oxide production, and mechanotransduction. Thus, in this paper, we describe a simple, and reproducible protocol for the isolation and culture of MLECs from adult mice using collagenase I-based enzymatic digestion, followed by sequential sorting with PECAM1 (also known as CD31)- and ICAM2 (also known as CD102)-coated microbeads. The morphology of isolated MLECs were observed with phase contrast microscope. MLECs were authenticated by CD31 immunoblotting, and immunofluorescent staining of established EC markers VE-cadherin and von Willebrand factor (vWF). Cultured MLECs also showed functional characteristics of ECs, evidenced by DiI-oxLDL uptake assay and THP-1 monocyte adhesion assay. Finally, we used MLECs from endothelium-specific enhancer of zeste homolog 2 (EZH2) knockout mice to show the general applicability of our protocol. To conclude, we describe here a simple and reproducible protocol to isolate highly pure and functional ECs from adult mouse lungs. Isolation of ECs from genetically engineered mice is important for downstream phenotypic, genetic, or proteomic studies.


Asunto(s)
Separación Celular/métodos , Células Endoteliales/citología , Pulmón/citología , Animales , Antígenos CD/metabolismo , Cadherinas/metabolismo , Moléculas de Adhesión Celular/metabolismo , Células Cultivadas , Colagenasas/metabolismo , Células Endoteliales/metabolismo , Proteína Potenciadora del Homólogo Zeste 2/genética , Técnicas de Inactivación de Genes , Pulmón/metabolismo , Ratones , Microscopía de Contraste de Fase , Factor de von Willebrand/metabolismo
17.
Pharmacol Ther ; 196: 15-43, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30439455

RESUMEN

Atherosclerosis, the principal cause of cardiovascular death worldwide, is a pathological disease characterized by fibro-proliferation, chronic inflammation, lipid accumulation, and immune disorder in the vessel wall. As the atheromatous plaques develop into advanced stage, the vulnerable plaques are prone to rupture, which causes acute cardiovascular events, including ischemic stroke and myocardial infarction. Emerging evidence has suggested that atherosclerosis is also an epigenetic disease with the interplay of multiple epigenetic mechanisms. The epigenetic basis of atherosclerosis has transformed our knowledge of epigenetics from an important biological phenomenon to a burgeoning field in cardiovascular research. Here, we provide a systematic and up-to-date overview of the current knowledge of three distinct but interrelated epigenetic processes (including DNA methylation, histone methylation/acetylation, and non-coding RNAs), in atherosclerotic plaque development and instability. Mechanistic and conceptual advances in understanding the biological roles of various epigenetic modifiers in regulating gene expression and functions of endothelial cells (vascular homeostasis, leukocyte adhesion, endothelial-mesenchymal transition, angiogenesis, and mechanotransduction), smooth muscle cells (proliferation, migration, inflammation, hypertrophy, and phenotypic switch), and macrophages (differentiation, inflammation, foam cell formation, and polarization) are discussed. The inherently dynamic nature and reversibility of epigenetic regulation, enables the possibility of epigenetic therapy by targeting epigenetic "writers", "readers", and "erasers". Several Food Drug Administration-approved small-molecule epigenetic drugs show promise in pre-clinical studies for the treatment of atherosclerosis. Finally, we discuss potential therapeutic implications and challenges for future research involving cardiovascular epigenetics, with an aim to provide a translational perspective for identifying novel biomarkers of atherosclerosis, and transforming precision cardiovascular research and disease therapy in modern era of epigenetics.


Asunto(s)
Aterosclerosis/genética , Epigénesis Genética , ARN no Traducido , Animales , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/inmunología , Humanos , Inmunidad , Factores de Riesgo
18.
Proc Natl Acad Sci U S A ; 116(2): 546-555, 2019 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-30584103

RESUMEN

SENCR is a human-specific, vascular cell-enriched long-noncoding RNA (lncRNA) that regulates vascular smooth muscle cell and endothelial cell (EC) phenotypes. The underlying mechanisms of action of SENCR in these and other cell types is unknown. Here, levels of SENCR RNA are shown to be elevated in several differentiated human EC lineages subjected to laminar shear stress. Increases in SENCR RNA are also observed in the laminar shear stress region of the adult aorta of humanized SENCR-expressing mice, but not in disturbed shear stress regions. SENCR loss-of-function studies disclose perturbations in EC membrane integrity resulting in increased EC permeability. Biotinylated RNA pull-down and mass spectrometry establish an abundant SENCR-binding protein, cytoskeletal-associated protein 4 (CKAP4); this ribonucleoprotein complex was further confirmed in an RNA immunoprecipitation experiment using an antibody to CKAP4. Structure-function studies demonstrate a noncanonical RNA-binding domain in CKAP4 that binds SENCR Upon SENCR knockdown, increasing levels of CKAP4 protein are detected in the EC surface fraction. Furthermore, an interaction between CKAP4 and CDH5 is enhanced in SENCR-depleted EC. This heightened association appears to destabilize the CDH5/CTNND1 complex and augment CDH5 internalization, resulting in impaired adherens junctions. These findings support SENCR as a flow-responsive lncRNA that promotes EC adherens junction integrity through physical association with CKAP4, thereby stabilizing cell membrane-bound CDH5.


Asunto(s)
Uniones Adherentes/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Proteínas de la Membrana/metabolismo , ARN Largo no Codificante/metabolismo , Uniones Adherentes/genética , Antígenos CD/genética , Antígenos CD/metabolismo , Cadherinas/genética , Cadherinas/metabolismo , Cateninas/genética , Cateninas/metabolismo , Células Endoteliales de la Vena Umbilical Humana/citología , Humanos , Proteínas de la Membrana/genética , Dominios Proteicos , ARN Largo no Codificante/genética , Resistencia al Corte/fisiología , Catenina delta
19.
Theranostics ; 8(11): 3007-3021, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29896299

RESUMEN

Rationale: Atherosclerosis is a chronic inflammatory and epigenetic disease that is influenced by different patterns of blood flow. However, the epigenetic mechanism whereby atheroprotective flow controls endothelial gene programming remains elusive. Here, we investigated the possibility that flow alters endothelial gene expression through epigenetic mechanisms. Methods: En face staining and western blot were used to detect protein expression. Real-time PCR was used to determine relative gene expression. RNA-sequencing of human umbilical vein endothelial cells treated with siRNA of enhancer of zeste homolog 2 (EZH2) or laminar flow was used for transcriptional profiling. Results: We found that trimethylation of histone 3 lysine 27 (H3K27me3), a repressive epigenetic mark that orchestrates gene repression, was reduced in laminar flow areas of mouse aorta and flow-treated human endothelial cells. The decrease of H3K27me3 paralleled a reduction in the epigenetic "writer"-EZH2, the catalytic subunit of the polycomb repressive complex 2 (PRC2). Moreover, laminar flow decreased expression of EZH2 via mechanosensitive miR101. Genome-wide transcriptome profiling studies in endothelial cells treated with EZH2 siRNA and flow revealed the upregulation of novel mechanosensitive gene IGFBP5 (insulin-like growth factor-binding protein 5), which is epigenetically silenced by H3K27me3. Functionally, inhibition of H3K27me3 by EZH2 siRNA or GSK126 (a specific EZH2 inhibitor) reduced H3K27me3 levels and monocyte adhesion to endothelial cells. Adenoviral overexpression of IGFBP5 also recapitulated the anti-inflammatory effects of H3K27me3 inhibition. More importantly, we observed EZH2 upregulation, and IGFBP5 downregulation, in advanced atherosclerotic plaques from human patients. Conclusion: Taken together, our findings reveal that atheroprotective flow reduces H3K27me3 as a chromatin-based mechanism to augment the expression of genes that confer an anti-inflammatory response in the endothelium. Our study exemplifies flow-dependent epigenetic regulation of endothelial gene expression, and also suggests that targeting the EZH2/H3K27me3/IGFBP5 pathway may offer novel therapeutics for inflammatory disorders such as atherosclerosis.


Asunto(s)
Antiinflamatorios/uso terapéutico , Aterosclerosis/genética , Proteína Potenciadora del Homólogo Zeste 2/genética , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica/genética , Histonas/genética , Proteína 5 de Unión a Factor de Crecimiento Similar a la Insulina/genética , Animales , Aterosclerosis/inmunología , Aterosclerosis/terapia , Endotelio/inmunología , Terapia Genética , Células Endoteliales de la Vena Umbilical Humana/inmunología , Humanos , Metilación , Ratones , Complejo Represivo Polycomb 2/genética , ARN Interferente Pequeño/genética
20.
Trends Endocrinol Metab ; 29(11): 739-742, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29753613

RESUMEN

Atherosclerosis is a chronic inflammatory and lipid-depository disease that eventually leads to acute cardiovascular events. Emerging evidence supports that epigenetic processes such as DNA methylation, histone modification, and noncoding RNAs play an important role in plaque progression and vulnerability, highlighting the therapeutic potential of epigenetic drugs in cardiovascular therapeutics.


Asunto(s)
Aterosclerosis , Metilación de ADN/genética , Inhibidores Enzimáticos/uso terapéutico , Epigénesis Genética/genética , Histonas/metabolismo , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/genética , Aterosclerosis/metabolismo , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...