Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
PLoS Negl Trop Dis ; 18(5): e0012163, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38713713

RESUMEN

BACKGROUND: Toxoplasmosis affects a quarter of the world's population. Toxoplasma gondii (T.gondii) is an intracellular parasitic protozoa. Macrophages are necessary for proliferation and spread of T.gondii by regulating immunity and metabolism. Family with sequence similarity 96A (Fam96a; formally named Ciao2a) is an evolutionarily conserved protein that is highly expressed in macrophages, but whether it play a role in control of T. gondii infection is unknown. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we utilized myeloid cell-specific knockout mice to test its role in anti-T. gondii immunity. The results showed that myeloid cell-specific deletion of Fam96a led to exacerbate both acute and chronic toxoplasmosis after exposure to T. gondii. This was related to a defectively reprogrammed polarization in Fam96a-deficient macrophages inhibited the induction of immune effector molecules, including iNOS, by suppressing interferon/STAT1 signaling. Fam96a regulated macrophage polarization process was in part dependent on its ability to fine-tuning intracellular iron (Fe) homeostasis in response to inflammatory stimuli. In addition, Fam96a regulated the mitochondrial oxidative phosphorylation or related events that involved in control of T. gondii. CONCLUSIONS/SIGNIFICANCE: All these findings suggest that Fam96a ablation in macrophages disrupts iron homeostasis and inhibits immune effector molecules, which may aggravate both acute and chronic toxoplasmosis. It highlights that Fam96a may autonomously act as a critical gatekeeper of T. gondii control in macrophages.


Asunto(s)
Hierro , Macrófagos , Ratones Noqueados , Toxoplasma , Toxoplasmosis , Animales , Macrófagos/inmunología , Macrófagos/parasitología , Toxoplasma/inmunología , Toxoplasma/fisiología , Ratones , Hierro/metabolismo , Toxoplasmosis/inmunología , Toxoplasmosis/parasitología , Toxoplasmosis/genética , Ratones Endogámicos C57BL , Femenino
2.
Free Radic Biol Med ; 192: 115-129, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36150559

RESUMEN

The iron (Fe) metabolism plays important role in regulating systemic metabolism and obesity development. The Fe inside cells can form iron-sulfur (Fe-S) clusters, which are usually assembled into target proteins with the help of a conserved cluster assembly machinery. Family with sequence similarity 96A (FAM96A; also designated CIAO2A) is a cytosolic Fe-S assembly protein involved in the regulation of cellular Fe homeostasis. However, the biological function of FAM96A in vivo is still incompletely defined. Here, we tested the role of FAM96A in regulating organismal Fe metabolism, which is relevant to obesity and adipose tissue homeostasis. We found that in mice genetically lacking FAM96A globally, intracellular Fe homeostasis was interrupted in both white and brown adipocytes, but the systemic Fe level was normal. FAM96A deficiency led to adipocyte hypertrophy and organismal energy expenditure reduction even under nonobesogenic normal chow diet-fed conditions. Mechanistically, FAM96A deficiency promoted mechanistic target of rapamycin (mTOR) signaling in adipocytes, leading to an elevation of de novo lipogenesis and, therefore, fat mass accumulation. Furthermore, it also caused mitochondrial defects, including defects in mitochondrial number, ultrastructure, redox activity, and metabolic function in brown adipocytes, which are known to be critical for the control of energy balance. Moreover, adipocyte-selective FAM96A knockout partially phenocopied global FAM96A deficiency with adipocyte hypertrophy and organismal energy expenditure defects but the mice were resistant to high-fat diet-induced weight gain. Thus, FAM96A in adipocytes may autonomously act as a critical gatekeeper of organismal energy balance by coupling Fe metabolism to adipose tissue homeostasis.


Asunto(s)
Tejido Adiposo , Metabolismo Energético , Tejido Adiposo/metabolismo , Tejido Adiposo Pardo , Animales , Proteínas Portadoras/metabolismo , Dieta Alta en Grasa/efectos adversos , Homeostasis , Hipertrofia/metabolismo , Hierro/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Obesidad/metabolismo , Sirolimus/metabolismo , Azufre/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
3.
Int Immunopharmacol ; 111: 109098, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35944460

RESUMEN

The metabolic alterations of amino acid metabolism are closely associated with inflammatory response. However, relatively little is known about the roles of phenylalanine (Phe)/tyrosine (Tyr) catabolites during inflammation. Nitisinone (NTBC) is an orphan drug used to treat hereditary tyrosinemia type I potentially by changing Phe/Tyr metabolic flow. In this study, we used NTBC as a tool to investigate the potential role of the Phe/Tyr catabolic pathway in inflammatory responses. We found that NTBC was effective in tempering the bacterial endotoxin lipopolysaccharide (LPS)-induced septic shock in mice. Mechanistically, the protective effect was related to the accumulation of a Phe/Tyr catabolic intermediate, 4-hydroxyphenylpyruvate (4-HPP), induced by the NTBC treatment. 4-HPP could inhibit NLRP3 inflammasome priming and activation processes and therefore reduce IL-1ß release and pyroptosis. Like NTBC, 4-HPP was also effective in attenuating endotoxic shock in mice. Our results suggest the Phe/Tyr catabolic pathway as a potential immunoregulatory hub that may be exploited therapeutically to alleviate inflammation.


Asunto(s)
Inflamasomas , Choque Séptico , Animales , Inflamasomas/metabolismo , Inflamación , Interleucina-1beta/metabolismo , Lipopolisacáridos/farmacología , Ratones , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Choque Séptico/tratamiento farmacológico , Tirosina
4.
Front Immunol ; 13: 773341, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35185877

RESUMEN

The herpes virus entry mediator (HVEM) is an immune checkpoint molecule regulating immune response, but its role in tissue repair remains unclear. Here, we reported that HVEM deficiency aggravated hepatobiliary damage and compromised liver repair after 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC)-induced injury. A similar phenotype was observed in B and T lymphocyte attenuator (BTLA)-deficient mice. These were correlated with impairment of neutrophil accumulation in the liver after injury. The hepatic neutrophil accumulation was regulated by microbial-derived secondary bile acids. HVEM-deficient mice had reduced ability to deconjugate bile acids during DDC-feeding, suggesting a gut microbiota defect. Consistently, both HVEM and BTLA deficiency had dysregulated intestinal IgA responses targeting the gut microbes. These results suggest that the HVEM-BTLA signaling may restrain liver injury by regulating the gut microbiota.


Asunto(s)
Enfermedad Hepática Crónica Inducida por Sustancias y Drogas/inmunología , Microbioma Gastrointestinal/inmunología , Receptores Inmunológicos/inmunología , Miembro 14 de Receptores del Factor de Necrosis Tumoral/inmunología , Transducción de Señal/inmunología , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Piridinas/toxicidad , Receptores Inmunológicos/deficiencia , Miembro 14 de Receptores del Factor de Necrosis Tumoral/deficiencia
5.
Appl Environ Microbiol ; 88(6): e0241321, 2022 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-35080909

RESUMEN

Recent progress indicates that the gut microbiota plays important role in regulating the host's glucose homeostasis. However, the mechanisms remain unclear. Here, we reported that one integral member of the murine gut microbiota, the protozoan Tritrichomonas musculis could drive the host's glucose metabolic imbalance. Using metabolomics analysis and in vivo assays, we found that mechanistically this protozoan influences the host glucose metabolism by facilitating the production of a significant amount of free choline. Free choline could be converted sequentially by choline-utilizing bacteria and then the host to a final product trimethylamine N-oxide, which promoted hepatic gluconeogenesis. Together, our data reveal a previously underappreciated gut eukaryotic microorganism by working together with other members of microbiota to influence the host's metabolism. Our study underscores the importance and prevalence of metabolic interactions between the gut microbiota and the host in modulating the host's metabolic health. IMPORTANCE Blood glucose levels are important for human health and can be influenced by gut microbes. However, its mechanism of action was previously unknown. In this study, researchers identify a unique member of the gut microbes in mice that can influence glucose metabolism by promoting the host's ability to synthesis glucose by using nonglucose materials. This is because of its ability to generate the essential nutrient choline, and choline, aided by other gut bacteria and the host, is converted to trimethylamine N-oxide, which promotes glucose production. These studies show how gut microbes promote metabolic dysfunction and suggest novel approaches for treating patients with blood glucose abnormality.


Asunto(s)
Colina , Microbioma Gastrointestinal , Animales , Colina/metabolismo , Microbioma Gastrointestinal/fisiología , Glucosa , Homeostasis , Humanos , Metilaminas/metabolismo , Ratones , Ratones Endogámicos C57BL
6.
Biochem Biophys Res Commun ; 583: 106-113, 2021 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-34735871

RESUMEN

Glucose homeostasis of adipocytes could be regulated by immune-adipose crosstalk. In order to investigate the effects of Lymphotoxin-like inducible protein that competes with glycoprotein D for herpesvirus entry on T cells (LIGHT) on glucose metabolism, we performed the present study. Our results showed that LIGHT deficiency improved glucose tolerance and enhanced glucose consumption of inguinal white adipose tissue (iWAT) under high fat diet. Consistently, Light overexpression could inhibit glucose uptake during the process of white adipogenesis. Mechanistically, LIGHT interacted with lymphotoxin-ß receptor (LTßR) to attenuate AKT pathway leading to downregulation of glucose transporter-4 (GLUT4) expression, which resulted in glucose uptake inhibition. In summary, our findings revealed LIGHT-LTßR-AKT-GLUT4 axis as a regulator of glucose uptake in adipose tissue, which suggested the pivotal role of LIGHT in maintaining glucose homeostasis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...