Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.987
Filtrar
1.
Neuroradiology ; 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39352413

RESUMEN

PURPOSE: To investigate dynamical degree centrality (dDC) alteration and its association with metabolic disturbance and cognitive impairment in minimal hepatic encephalopathy (MHE). METHODS: Fifty-eight cirrhotic patients (22 with MHE, 36 without MHE [NHE]) and 25 healthy controls underwent resting-state functional magnetic resonance imaging, 1H-magnetic resonance spectroscopy, and neurocognitive examination based on the Psychometric Hepatic Encephalopathy Score (PHES). We obtained metabolite ratios in the bilateral posterior cingulate cortex and precuneus, including glutamate and glutamine (Glx)/total creatine (tCr), myo-inositol (mI)/tCr, total choline/tCr, and N-acetyl aspartate/tCr. For each voxel, degree centrality was calculated as the sum of its functional connectivity with other voxels in the brain; and sliding-window correlation was used to calculate dDC per voxel. RESULTS: We observed a stepwise increase in Glx/tCr and a decrease in mI/tCr from NHE to MHE. The intergroup dDC differences were observed in the bilateral posterior cingulate cortex and precuneus (region of interest [ROI1]), bilateral superior-medial frontal gyrus and anterior cingulate cortex (ROI2), and left caudate head. The dDC in ROI2 (r = 0.450, P < 0.001) and mI/tCr (r = 0.297, P = 0.024) was correlated with PHES. Significant correlations were found between dDC in ROI1 and Glx/tCr (r = - 0.413, P = 0.001) and mI/tCr (r = 0.554, P < 0.001). The dDC in ROI2, Glx/tCr, and mI/tCr showed potential for distinguishing NHE from MHE (areas under the curve = 0.859, 0.655, and 0.672, respectively). CONCLUSION: Our findings suggested dynamic brain network disorganization in MHE, which was associated with metabolic derangement and neurocognitive impairment.

2.
World J Gastrointest Oncol ; 16(9): 3913-3931, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39350977

RESUMEN

BACKGROUND: The incidence of primary liver cancer is increasing year by year. In 2022 alone, more than 900000 people were diagnosed with liver cancer worldwide, with hepatocellular carcinoma (HCC) accounting for 75%-85% of cases. HCC is the most common primary liver cancer. China has the highest incidence and mortality rate of HCC in the world, and it is one of the malignant tumors that seriously threaten the health of Chinese people. The onset of liver cancer is occult, the early cases lack typical clinical symptoms, and most of the patients are already in the middle and late stage when diagnosed. Therefore, it is very important to find new markers for the early detection and diagnosis of liver cancer, improve the therapeutic effect, and improve the prognosis of patients. Protein tyrosine phosphatase non-receptor 2 (PTPN2) has been shown to be associated with colorectal cancer, triple-negative breast cancer, non-small cell lung cancer, and prostate cancer, but its biological role and function in tumors remain to be further studied. AIM: To combine the results of relevant data obtained from The Cancer Genome Atlas (TCGA) to provide the first in-depth analysis of the biological role of PTPN2 in HCC. METHODS: The expression of PTPN2 in HCC was first analyzed based on the TCGA database, and the findings were then verified by immunohistochemical staining, quantitative real-time polymerase chain reaction (qRT-PCR), and immunoblotting. The value of PTPN2 in predicting the survival of patients with HCC was assessed by analyzing the relationship between PTPN2 expression in HCC tissues and clinicopathological features. Finally, the potential of PTPN2 affecting immune escape of liver cancer was evaluated by tumor immune dysfunction and exclusion and immunohistochemical staining. RESULTS: The results of immunohistochemical staining, qRT-PCR, and immunoblotting in combination with TCGA database analysis showed that PTPN2 was highly expressed and associated with a poor prognosis in HCC patients. Kyoto Encyclopedia of Genes and Genomes enrichment analysis showed that PTPN2 was associated with various pathways, including cancer-related pathways, the Notch signaling pathway, and the MAPK signaling pathway. Gene Set Enrichment Analysis showed that PTPN2 was highly expressed in various immune-related pathways, such as the epithelial mesenchymal transition process. A risk model score based on PTPN2 showed that immune escape was significantly enhanced in the high-risk group compared with the low-risk group. CONCLUSION: This study investigated PTPN2 from multiple biological perspectives, revealing that PTPN2 can function as a biomarker of poor prognosis and mediate immune evasion in HCC.

3.
World J Gastrointest Oncol ; 16(9): 3875-3886, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39350978

RESUMEN

BACKGROUND: Inflammation-related markers including neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), monocyte-to-lymphocyte ratio (MLR), systemic immune-inflammation index (SII), systemic inflammation response index (SIRI) and prognostic nutritional index (PNI) could reflect tumor immune microenvironment and predict prognosis of cancers. However, it had not been explored in alpha-fetoprotein (AFP) producing gastric cancer (GC). AIM: To determine the predictive value of inflammation-related peripheral blood markers including as NLR, PLR, MLR, SII, SIRI and PNI in the prognosis of AFP- producing GC (AFPGC). Besides, this study would also compare the differences in tumor immune microenvironment, clinical characteristics and prognosis between AFPGC and AFP- GC patients to improve the understanding of this disease. METHODS: 573 patients enrolled were retrospectively studied. They were divided into AFP+ group (AFP ≥ 20 ng/mL) and AFP- group (AFP < 20 ng/mL), comparing the levels of NLR/PLR/MLR/SII/SIRI/PNI and prognosis. In AFP+ group, the impact of NLR/PLR/MLR/SII/SIRI/PNI and their dynamic changes on prognosis were further explored. RESULTS: Compared with AFP- patients, AFP+ patients had higher NLR/PLR/MLR/SII/SIRI and lower PNI levels and poorer overall survival (OS). In the AFP+ group, mortality was significantly lower in the lower NLR/PLR/MLR/SII/SIRI group and higher PNI group. Moreover, the dynamic increase (NLR/PLR/MLR/SII/SIRI) or decrease (PNI) was associated with the rise of mortality within 1 year of follow-up. CONCLUSION: Compared with AFP- patients, the level of inflammation-related peripheral blood markers significantly increased in AFP+ patients, which was correlated with OS of AFP+ patients. Also, the gradual increase of SII and SIRI was associated with the risk of death within one year in AFP+ patients. AFPGC should be considered as a separate type and distinguished from AFP- GC because of the difference in tumor immune microenvironment. It requires basic experiments and large clinical samples in the future.

4.
Inflammopharmacology ; 2024 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-39305407

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative disorder frequently accompanied by neuroinflammation and oxidative stress. The medicine and food homology (MFH) has shown potential for treating neuroinflammation and oxidative stress. This study aimed to provide a safe and efficient therapy for AD based on MFH. In this study, we develop a MFH formula consisting of egg yolk oil, perilla seed oil, raphani seed oil, cinnamon oil, and noni puree (EPRCN). To evaluate the ameliorative effects of EPRCN on AD-related symptoms, a mouse model of AD was constructed using intraperitoneal injection of scopolamine in ICR mice. Experimental results demonstrated that EPRCN supplement restored behavioral deficits and suppressed neuroinflammation and oxidative stress in the hippocampus of scopolamine-induced mice. An in vitro study was then performed using induction of Aß(25-35) in glial (BV-2 and SW-1783) and neuron (SH-SY5Y) cell lines to examine the improvement mechanism of EPRCN on cognitive deficits. Multi-omics and in vitro studies demonstrated that these changes were driven by the anandamide (AEA)-Trpv1-Nrf2 pathway, which was inhibited by AM404 (an AEA inhibitor), AMG9810 (a Trpv1 inhibitor), and BT (an Nrf2 inhibitor). Consequently, EPRCN is an effective therapy on preventing cognitive deficits in mouse models of AD. In contrast to donepezil, EPRCN exhibits a novel modes action for ameliorating neuroinflammation. The mechanism of EPRCN on preventing cognitive deficits is mediated by improving neuroinflammation and oxidative stress via activating the AEA-Trpv1-Nrf2 pathway.

5.
Zhongguo Zhong Yao Za Zhi ; 49(15): 4022-4030, 2024 Aug.
Artículo en Chino | MEDLINE | ID: mdl-39307737

RESUMEN

In recent years, the incidence and mortality rates of cardiovascular diseases in China have kept rising, with no significant reduction in disease burden observed. Percutaneous coronary intervention(PCI) is an effective approach for treating coronary artery disease. Drug-eluting stents and drug-coated balloons are currently the most common PCI devices used in clinical practice. However, challenges with restenosis and late-stage thrombotic events persist. Inhibiting the proliferation of vascular smooth muscle cells while enhancing endothelial cell activity is crucial for reducing restenosis and preventing thrombosis, and it remains a challenge in research. The active compounds and extracts of traditional Chinese medicine(TCM), particularly the combinations of active compounds in coatings, possess multi-target potential and serve as a supplement to coatings prepared from synthetic compounds. This review elucidates the application of TCM active compounds(such as arsenic trioxide, paclitaxel, hirudin, tetramethylpyrazine, emodin, oxymatrine, and curcumin), combinations of TCM active compounds(paclitaxel/hirudin, geniposide/baicalin), and TCM extracts(such as Curcumae Rhizoma extract and Tripterygium hypoglaucum extract) in the coatings for PCI devices in recent years. Furthermore, this review expounds the current challenges and future prospects in this field, giving insights into the innovation of PCI devices.


Asunto(s)
Medicamentos Herbarios Chinos , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/farmacología , Humanos , Animales , Medicina Tradicional China , Intervención Coronaria Percutánea/instrumentación , Stents Liberadores de Fármacos
6.
Zhongguo Zhong Yao Za Zhi ; 49(15): 4044-4053, 2024 Aug.
Artículo en Chino | MEDLINE | ID: mdl-39307756

RESUMEN

Diabetic kidney disease(DKD) is a prevalent and severe microvascular complication of type 2 diabetes mellitus(T2DM). Chronic microinflammation is an important factor exacerbating renal tissue damage in DKD individuals. Macrophages play a crucial role in immune-inflammatory responses, and they can transiently and reversibly polarize into the pro-inflammatory M1 phenotype and anti-inflammatory M2 phenotype based on microenvironmental differences. The imbalance in M1/M2 macrophage polarization can exacerbate DKD progression by fostering inflammatory cytokine aggregation in the glomeruli and renal interstitium. Therefore, restoring the balance of macrophage is a pivotal avenue to ameliorate the chronic microinflammation state in DKD. Macrophage polarization is a complex and dynamic process. Various information molecules and cytokines involved in the polarization process play important roles in regulating phenotypes during the progression of DKD. They are closely related to various mechanisms such as metabolism, inflammation, fibrosis, and mitochondrial autophagy in DKD. By coordinating the inflammatory responses through polarization, they play a key role in regulating inflammation in metabolic-related diseases. The complex network of pathways involved in macrophage polarization corresponds well with the multi-pathway, multi-target treatment model of traditional Chinese medicine(TCM). Active ingredients and formulas of TCM can intervene in DKD by regulating macrophage polarization. Studies on relieving renal inflammation, repairing renal tissues, and promoting renal function recovery through macrophage polarization modulation are not uncommon. Therefore, based on exis-ting evidence, this study reviews TCM in targeting M1/M2 macrophage polarization balance to improve DKD, aiming to explore the potential of macrophage polarization in regulating DKD, which is expected to provide evidence support for the clinical diagnosis and treatment of DKD with TCM as well as the exploration of its biological mechanisms.


Asunto(s)
Nefropatías Diabéticas , Medicamentos Herbarios Chinos , Macrófagos , Medicina Tradicional China , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/inmunología , Humanos , Macrófagos/inmunología , Macrófagos/efectos de los fármacos , Animales , Diabetes Mellitus Tipo 2/inmunología , Diabetes Mellitus Tipo 2/tratamiento farmacológico
7.
Anal Chem ; 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39311680

RESUMEN

Nowadays, continuous efforts have been devoted to designing stable and high-efficiency electrochemiluminescence (ECL) emitters as alternatives for tris(2,2'-bipyridine)-ruthenium(II) (Ru(bpy)32+) in medical research. Herein, a novel ECL emitter was obtained by coordinating crystalline covalent triazinyl frameworks (cCTFs) with Ru2+ (termed Ru-cCTFs), which exhibited strong ECL emission by the ligand to metal charge transfer (LMCT) route. After its integration with 4-mercaptopyridine (SH-Py), the resultant SH-Py-Ru-cCTFs achieved 2.3-fold enhancement in the ECL efficiency by employing Ru(bpy)32+ as a standard, which involved a dynamic "intrarticular radical annihilation" ECL pathway. On such foundation, an automated ECL (A-ECL) aptasensor was constructed with an "on-off-on" model and magnetic separation upon linkage of the SH-Py-Ru-cCTFs with streptavidin (SA) magnetic beads (MBs). This automatic assay of miRNA-182 showed a wider linear range from 1.0 to 100.0 fM with a correlation coefficient (R2) of 0.994, a lower limit of detection (LOD) down to 0.28 fM, and faster operation within 41 min. Impressively, this bioassay facilely distinguished the stages of glioma disease from clinical blood samples with high accuracy. Hence, this research sheds light on how to develop advanced ECL luminophores and an automatic method, showing substantial insights into pathogenesis research of gliomas.

8.
BMC Microbiol ; 24(1): 353, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39294587

RESUMEN

BACKGROUND: Clostridium innocuum, previously considered a commensal microbe, is a spore-forming anaerobic bacterium. C. innocuum displays inherent resistance to vancomycin and is associated with extra-intestinal infections, antibiotic-associated diarrhea, and inflammatory bowel disease. This study seeks to establish a multilocus sequence typing (MLST) scheme to explore the correlation between C. innocuum genotyping and its potential pathogenic phenotypes. METHODS: Fifty-two C. innocuum isolates from Linkou Chang Gung Memorial Hospital (CGMH) in Taiwan and 60 sequence-available C. innocuum isolates from the National Center for Biotechnolgy Information Genome Database were included. The concentrated sequence of housekeeping genes in C. innocuum was determined by amplicon sequencing and used for MLST and phylogenetic analyses. The biofilm production activity of the C. innocuum isolates was determined by crystal violet staining. RESULTS: Of the 112 C. innocuum isolates, 58 sequence types were identified. Maximum likelihood estimation categorized 52 CGMH isolates into two phylogenetic clades. These isolates were found to be biofilm producers, with isolates in clade I exhibiting significantly higher biofilm production than isolates in clade II. The sub-inhibitory concentration of vancomycin seemed to minimally influence biofilm production by C. innocuum isolates. Nevertheless, C. innocuum embedded in the biofilm structure demonstrated resistance to vancomycin treatments at a concentration greater than 256 µg/mL. CONCLUSIONS: This study suggests that a specific genetic clade of C. innocuum produces a substantial amount of biofilm. Furthermore, this phenotype assists C. innocuum in resisting high concentrations of vancomycin, which may potentially play undefined roles in C. innocuum pathogenesis.


Asunto(s)
Antibacterianos , Biopelículas , Infecciones por Clostridium , Clostridium , Variación Genética , Pruebas de Sensibilidad Microbiana , Tipificación de Secuencias Multilocus , Filogenia , Resistencia a la Vancomicina , Vancomicina , Biopelículas/crecimiento & desarrollo , Biopelículas/efectos de los fármacos , Humanos , Clostridium/genética , Clostridium/efectos de los fármacos , Clostridium/aislamiento & purificación , Clostridium/clasificación , Antibacterianos/farmacología , Vancomicina/farmacología , Resistencia a la Vancomicina/genética , Infecciones por Clostridium/microbiología , Taiwán , Genotipo , Genes Esenciales
9.
Artículo en Inglés | MEDLINE | ID: mdl-39289935

RESUMEN

OBJECTIVE: This study aimed to investigate the protective effect and mechanism of Astragalus polysaccharide (APS) on autoimmune encephalomyelitis. METHODS: C57BL/6 mice were randomly divided into the blank control group, EAE group, and APS intervention group (n=15/group). The Experimental Autoimmune Encephalomyelitis (EAE) mouse model was established by active immunization. The pathological changes in the spinal cord were evaluated by Hematoxylin-eosin (HE) and Luxol Fast Blue (LFB) staining. The number of CD11b+ Gr-1+ myeloid-derived suppressor cells (MDSCs) in the spleen tissues of mice in each group was determined by immunofluorescence staining. The expression of Arginase-1 in the spinal cord and spleen of each group was detected by immunofluorescence double staining. The TNF-α, IL-6, and Arginase-1 levels in the spleen were detected by ELISA assay. A western blot was used to detect the protein expression of the AMPK/JAK/STAT3/Arginase-1 signaling pathway. RESULTS: After the intervention of APS, the incidence of autoimmune encephalomyelitis in mice of the APS group was significantly lower than that in the EAE group, and the intervention of APS could significantly delay the onset time in the EAE mice, and the score of neurological function deficit in mice was significantly lower than that in EAE group (P < 0.05). APS intervention could reduce myelin loss and improve the inflammatory response of EAE mice. Moreover, it could induce the expression of CD11b+ GR-1 + bone MDSCs in the spleen and increase the expression of Arginase-1 in the spinal cord and spleen. This study further demonstrated that APS can protect EAE mice by activating the AMPK/JAK/STAT3/Arginase-1 signaling pathway. CONCLUSION: After the intervention of APS, myelin loss and inflammatory response of EAE mice were effectively controlled. APS promoted the secretion of Arginase-1 by activating MDSCs and inhibited CD4+T cells by activating AMPK/JAK/STAT3/Arginase-1 signaling pathway, thus improving the clinical symptoms and disease progression of EAE mice.

10.
J Phys Chem A ; 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39315480

RESUMEN

The investigation into the interfacial properties between fullerene compounds and Sn-based perovskites (Sn-PVSK) holds extraordinary significance for advancing efficient and stable Pb-free perovskite solar cells. This study is the first theoretical exploration to examine their interfacial properties using Ab initio molecular dynamics (AIMD) simulations and trajectory analysis methods with C60@FASnI3 as a representative system. The impact of surface termination and FA+ rotation on interface stability has been assessed. Within the 10 ps AIMD simulations, the C60@FAI interface demonstrates greater stability compared to the C60@SnI interface due to the robustness of the single-bonded I on the FAI termination and weaker C60-FAI interactions. The C60@SnI interface has poor stability, but it can be enhanced by controlling the FA+ rotation, achieving optimal stability at a 45° rotation along the C-H bond axis. This is attributed to minimal hydrogen bond interactions and a reduced steric hindrance. This work not only substantiates the pivotal role of surface termination in maintaining interface stability but, most importantly, also reveals how FA+ rotational dynamics regulate the C60@SnI interface stability, providing valuable insights for further improving the efficiency of Sn-PVSK solar cells.

11.
Brain Res ; 1845: 149243, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39293679

RESUMEN

Kainic acid (KA)-induced excitotoxicity induces acute degradation of phospholipids and release of free fatty acids (FFAs) in rodent hippocampus, but the long-term changes in phospholipids or the subcellular origins of liberated FFAs remain unclarified. Phospholipids and FFAs were determined in KA-damaged mouse hippocampus by enzyme-coupled biochemical assays. The evolution of membrane injuries in the hippocampus was examined by a series of morphological techniques. The levels of phospholipids in the hippocampus decreased shortly after KA injection but recovered close to the control levels at 24 h. The decline in phospholipids was accelerated again from 72 to 120 after KA treatment. The levels of FFAs were negatively related to those of phospholipids, exhibiting a similar but opposite trend of changes. KA treatment caused progressively severe damage to vulnerable neurons, which was accompanied by increased permeability in the cell membrane and increased staining of membrane-bound dyes in the cytoplasm. Double fluorescence staining showed that the latter was partially overlapped with abnormally increased endocytic and autophagic components in damaged neurons. Our results revealed intricate and biphasic changes in phospholipid and FFA levels in KA-damaged hippocampus. Disrupted endomembrane system may be one of the major origins for KA-induced FFA release.

12.
Environ Res ; 263(Pt 1): 119934, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39276834

RESUMEN

OBJECTIVE: Studies have shown that fine particulate matter (PM2.5) has adverse effects on the liver function, but epidemiological evidence is limited, especially regarding pregnant women. This study aims to investigate the association between PM2.5 exposure in early pregnancy and maternal liver function during pregnancy. METHODS: This retrospective cohort study included 13,342 pregnant participants. PM2.5 and Ozone (O3) exposure level, mean temperature, and relative humidity for each participant were assessed according to their residential address. The levels of serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), and total bilirubin (TBIL) were measured during the second and third trimesters. Data on PM2.5 and O3 exposure level were sourced from Tracking Air Pollution in China (TAP), while the mean temperature and relative humidity were obtained from the ERA5 dataset. The Generalized Additive Model (GAM) was used to analyze the associations between PM2.5 exposure and maternal liver function during pregnancy, adjusting for potential confounding factors. RESULTS: According to the results, each 10 µg/m3 increase in PM2.5 was associated with an increase of 3.57% (95% CI: 0.29%, 6.96%) in ALT and 4.25% (95% CI: 2.33%, 6.21%) in TBIL during the second trimester and 4.51% (95% CI: 2.59%, 6.47%) in TBIL during the third trimester, respectively. After adjusting for O3, these associations remained significant, and the effect of PM2.5 on ALT during the second trimester was further strengthened. No significant association observed between PM2.5 and AST. CONCLUSIONS: PM2.5 exposure in early pregnancy is associated with increasement of maternal ALT and TBIL, suggesting that PM2.5 exposure may have an adverse effect on maternal liver function. Although this finding indicates an association between PM2.5 exposure and maternal liver function, more research is needed to confirm our findings and explore the underlying biological mechanisms.

13.
J Invertebr Pathol ; : 108212, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39343128

RESUMEN

DIV1 has the characteristics of fast transmission and a broad host range. Its infection leads to a high mortality rate, posing a serious threat to the global crustacean aquaculture industry. In order to increase the accuracy of DIV1 detection and reduce the difficulty of result interpretation, this study modified the original nested PCR method targeting the DIV1 ATPase gene. The internal primers for the nested PCR were redesigned to produce a 338 bp amplification product in the second step PCR, effectively distinguishing the target band from primer dimers. The newly established nested PCR method exhibits strong specificity and high sensitivity, with a detection limit as low as 1.37 × 101 copies/reaction. The developed nested PCR assay provides new technical support for the accurate detection of DIV1 in global crustacean aquaculture.

14.
Acta Biomater ; 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39322044

RESUMEN

Post-traumatic tendon adhesions significantly affect patient prognosis and quality of life, primarily stemming from the absence of effective preventive and curative measures in clinical practice. Current treatment modalities, including surgical excision and non-steroidal anti-inflammatory drugs, frequently exhibit limited efficacy or result in severe side effects. Consequently, the use of anti-adhesive barriers for drug delivery and implantation at the injury site to address peritendinous adhesion (PA) has attracted considerable attention. Electrospun nanofiber membranes (ENMs) have been extensively employed as drug-delivery platforms. In this study, we fabricated a polylactic acid (PLA)-dipyridamole (DP)-graft copolymer ENM called PLC-DP. This membrane exhibits enzyme-sensitive features, allowing more controlled and sustained drug release compared with conventional drug-loaded ENMs. In experiments, PLC-DP implantation reduced tissue adhesion by 47% relative to the control group while not adversely affecting tendon healing. Mechanistically, PLC-DP effectively activates the FXYD domain containing ion-transport regulator 2 (FXYD2) protein, thereby downregulating the fibroblast-transforming growth factor beta (TGF-ß)/Smad3 signaling pathway. PLC-DP leverages the anti-adhesive properties of DP and the enzyme-sensitive characteristics of graft copolymers, providing a promising approach for the future clinical treatment and prevention of PA. STATEMENT OF SIGNIFICANCE: Peritendinous adhesions (PA) are a common and disabling condition that seriously affects the prognosis and quality of life of post-trauma patients. Current treatments often have limited efficacy or severe side effects, leaving a serious gap in clinical practice. We developed a significant biomaterial, poly(lactic acid)-dipyridamole graft copolymer electrospun nanofibrous membrane (PLC-DP), specifically for PA inhibition.In addition, this study uniquely combines dipyridamole, an anti-adhesive agent, and enzyme-sensitive copolymers in electrospun nanofibrous membrane. Unlike conventional drug-loaded electrospun nanofibrous membranes, PLC-DPs have enzyme-sensitive drug properties that allow for sustained drug release on demand. Our experiments showed that implantation of PLC-DP was effective in reducing tissue adhesions by 47% without affecting tendon healing. We elucidated the mechanism behind this phenomenon, suggesting that PCD activates FXYD2 to inhibit TGF-ß-induced expression of Col III, which is a key factor in PA development.

15.
J Physiol ; 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39324853

RESUMEN

Spiral ganglion neurons (SGNs) are primary sensory afferent neurons that relay acoustic information from the cochlear inner hair cells (IHCs) to the brainstem. The response properties of different SGNs diverge to represent a wide range of sound intensities in an action-potential code. This biophysical heterogeneity is established during pre-hearing stages of development, a time when IHCs fire spontaneous Ca2+ action potentials that drive glutamate release from their ribbon synapses onto the SGN terminals. The role of spontaneous IHC activity in the refinement of SGN characteristics is still largely unknown. Using pre-hearing otoferlin knockout mice (Otof-/-), in which Ca2+-dependent exocytosis in IHCs is abolished, we found that developing SGNs fail to upregulate low-voltage-activated K+-channels and hyperpolarisation-activated cyclic-nucleotide-gated channels. This delayed maturation resulted in hyperexcitable SGNs with immature firing characteristics. We have also shown that SGNs that synapse with the pillar side of the IHCs selectively express a resurgent K+ current, highlighting a novel biophysical marker for these neurons. RNA-sequencing showed that several K+ channels are downregulated in Otof-/- mice, further supporting the electrophysiological recordings. Our data demonstrate that spontaneous Ca2+-dependent activity in pre-hearing IHCs regulates some of the key biophysical and molecular features of the developing SGNs. KEY POINTS: Ca2+-dependent exocytosis in inner hair cells (IHCs) is otoferlin-dependent as early as postnatal day 1. A lack of otoferlin in IHCs affects potassium channel expression in SGNs. The absence of otoferlin is associated with SGN hyperexcitability. We propose that type I spiral ganglion neuron functional maturation depends on IHC exocytosis.

16.
Phytomedicine ; 135: 156067, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39326137

RESUMEN

BACKGROUND: Renal fibrosis is a hallmark of chronic kidney disease (CKD). Smad3 serves as the principal transcription factor mediating the pro-fibrosis effects of TGF-ß signaling in renal fibrosis. Biochanin A (BCA), a natural isoflavone, has been shown to attenuate renal fibrosis by inhibiting TGF-ß signaling but the detailed mechanisms remain unresolved. This study aimed to elucidate the specific mechanisms by which BCA modulates TGF-ß signaling. METHODS: Renal fibrosis models were established both in vitro, using TGF-ß1-stimulated mouse renal tubular TCMK1 cells, and in vivo, employing mice with unilateral ureter obstruction (UUO). RNA-seq was conducted to identify BCA-regulated genes. The AnimalTFDB4.0 database was utilized to predict transcription factors with potential binding to Smad3 promoter. The activities of TGF-ß signaling and the cloned mouse Smad3 promoter were assessed using luciferase reporter assays. Plasmid transfection was performed using polyethylenimine in TCMK1 cells or ultrasound microbubbles in UUO kidneys. Gene expression was analyzed by RT-PCR, western blot, and immunohistochemistry assays. RESULTS: BCA significantly inhibited TGF-ß signaling activity and suppressed TGF-ß1-induced fibrotic gene expression in TCMK1 cells. RNA-seq and in silico analyses identified Smad3 as the key gene downregulated by BCA, while leaving Smad2 unaffected. This selective transcriptional suppression of Smad3 by BCA was validated by luciferase reporter assays using the cloned Smad3 promoter. Furthermore, transcription factor binding prediction identified that Klf6, a transcription factor downregulated by BCA, has binding potential to the Smad3 promoter and promotes Smad3 transcription. Klf6 expression was induced in TGF-ß1-stimulated TCMK1 cells and UUO kidneys, but this induction was abolished upon BCA treatment. Importantly, Klf6 overexpression restored Smad3 expression and counteracted the anti-fibrosis effects of BCA in both TGF-ß1-stimulated TCMK1 cells and UUO kidneys. CONCLUSION: TGF-ß-responsive Klf6 transcriptionally transactivates Smad3 expression. BCA exerts anti-renal fibrosis effects by inhibiting the Klf6-Smad3 signaling axis, underscoring its therapeutic potential in the treatment of CKD.

18.
Artículo en Inglés | MEDLINE | ID: mdl-39261123

RESUMEN

Streptococcus oralis, belonging to the viridans group streptococci (VGS), has been considered a component of the normal flora predominantly inhabiting the oral cavity. In recent years, a growing body of literature has revealed that dental procedures or daily tooth brushing activities can cause the spread of S. oralis from the oral cavity into various body sites leading to life-threatening opportunistic infections such as infective endocarditis (IE) and meningitis. However, very little is currently known about the pathogenicity of S. oralis. Thus, the aim of this review is to update the current understanding of the pathogenic potential of S. oralis to pave the way for the prevention and treatment of S. oralis opportunistic infections.

19.
BMC Biol ; 22(1): 205, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39267057

RESUMEN

BACKGROUND: MicroRNA isoforms (isomiRs), tRNA-derived fragments (tRFs), and rRNA-derived fragments (rRFs) represent most of the small non-coding RNAs (sncRNAs) found in cells. Members of these three classes modulate messenger RNA (mRNA) and protein abundance and are dysregulated in diseases. Experimental studies to date have assumed that the subcellular distribution of these molecules is well-understood, independent of cell type, and the same for all isoforms of a sncRNA. RESULTS: We tested these assumptions by investigating the subcellular distribution of isomiRs, tRFs, and rRFs in biological replicates from three cell lines from the same tissue and same-sex donors that model the same cancer subtype. In each cell line, we profiled the isomiRs, tRFs, and rRFs in the nucleus, cytoplasm, whole mitochondrion (MT), mitoplast (MP), and whole cell. Using a rigorous mathematical model we developed, we accounted for cross-fraction contamination and technical errors and adjusted the measured abundances accordingly. Analyses of the adjusted abundances show that isomiRs, tRFs, and rRFs exhibit complex patterns of subcellular distributions. These patterns depend on each sncRNA's exact sequence and the cell type. Even in the same cell line, isoforms of the same sncRNA whose sequences differ by a few nucleotides (nts) can have different subcellular distributions. CONCLUSIONS: SncRNAs with similar sequences have different subcellular distributions within and across cell lines, suggesting that each isoform could have a different function. Future computational and experimental studies of isomiRs, tRFs, and rRFs will need to distinguish among each molecule's various isoforms and account for differences in each isoform's subcellular distribution in the cell line at hand. While the findings add to a growing body of evidence that isomiRs, tRFs, rRFs, tRNAs, and rRNAs follow complex intracellular trafficking rules, further investigation is needed to exclude alternative explanations for the observed subcellular distribution of sncRNAs.


Asunto(s)
MicroARNs , ARN Ribosómico , ARN de Transferencia , MicroARNs/genética , MicroARNs/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Humanos , ARN Ribosómico/genética , ARN Ribosómico/metabolismo , Secuencia de Bases , Isoformas de ARN/genética , Línea Celular Tumoral , Línea Celular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...