Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Anal Bioanal Chem ; 413(26): 6661-6669, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34476520

RESUMEN

Bacillus cereus is one of the most common foodborne pathogens found in various kinds of staple foods such as rice and wheat. A rapid and accurate detection method for this pathogen is highly desirable for the sustainable production of relevant food products. While several classical and molecular-based detection methods are available for the identification of B. cereus, they suffered one or more limitations such as the requirement for a tedious and time-consuming process, less than ideal specificity, and the lack of portability. Herein, we developed the first paper-based sensing device that exhibits high species specificity with sufficiently low limit of detection for the visual detection of specific DNA sequences of B. cereus. The success is attributed to the strategic planning of fabrication in various dimensions including thorough bioinformatics search for highly specific genes, the use of the pyrrolidinyl peptide nucleic acid (PNA) probe whose selectivity advantage is well documented, and an effective PNA immobilization and DNA-binding visualization method with an internal cross-checking system for validating the results. Testing in rice matrices indicates that the sensor is capable of detecting and distinguishing B. cereus from other bacterial species. Hence, this paper-based sensor has potential to be adopted as a practical means to detect B. cereus in food industries.


Asunto(s)
Bacillus cereus/aislamiento & purificación , Técnicas Biosensibles/métodos , Microbiología de Alimentos , Ácidos Nucleicos de Péptidos/química , Pirrolidinas/química , Oryza/microbiología , Papel
2.
Mikrochim Acta ; 187(4): 238, 2020 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-32189135

RESUMEN

A simple probe pair was designed for the detection of hemoglobin E (HbE) genotype, a single-point mutation that leads to abnormal red blood cells commonly found in South East Asia. The key to differentiation is the use of a conformationally constrained peptide nucleic acid (PNA) that was immobilized on carboxymethylcellulose-modified paper. This was then used for target DNA binding and visualization by an enzyme-catalyzed pigmentation. The biotinylated target DNA bound to the immobilized probe was visually detected via alkaline phosphatase-linked streptavidin. This enzyme conjugate catalyzed the dephosphorylation of the substrate 5-bromo-4-chloro-3-indolyl phosphate, leading to a series of reactions that generate an intense, dark blue pigment. The test was validated with 100 DNA samples, which shows good discrimination among different genotypes (normal, HbE, and heterozygous) with 100% accuracy when optimal conditions of analysis were applied. The method does not require temperature control and can be performed at ambient temperature. This is an attractive feature for diagnosis in primary care, which accounts for a large part of affected population. Graphical abstract Schematic representation of a paper-based sensor for the detection of the gene Hemoglobin E. The interaction between an immobilized peptide nucleic acid and a DNA target leads to enzymatic pigmentation, allowing simple visual readout with up to 100% accuracy.


Asunto(s)
Colorimetría/métodos , Genotipo , Sondas de Ácido Nucleico/química , Ácidos Nucleicos de Péptidos , Talasemia/genética , Biotinilación , Carboximetilcelulosa de Sodio , ADN/metabolismo , Humanos , Sondas de Ácido Nucleico/metabolismo , Pigmentación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA