Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Med Chem Lett ; 13(7): 1052-1061, 2022 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-35859863

RESUMEN

Overactive bladder (OAB) is a syndrome causing a sudden and unstoppable need to urinate with significant global prevalence. Several drugs are used to treat OAB; however, they have various side effects. Therefore, new treatment options for OAB are required. A series of novel 5-oxo-N-phenyl-1-thioxo-4,5-dihydro-1H-thiazolo[3,4-a]quinazoline-3-carboxamide derivatives were synthesized and evaluated for their large-conductance voltage- and Ca2+-activated K+ channel activation through a cell-based fluorescence assay and electrophysiological recordings. Several compounds, including a 7-bromo substituent on the heterocyclic system, showed increased channel currents. Among the derivatives, compound 12h exhibited potent in vitro activity with a half-maximal effective concentration (EC50) of 2.89 µM, good oral pharmacokinetic properties (area under the curve and half-life), and in vivo efficacy in a spontaneously hypertensive rat model.

2.
Eur J Pharmacol ; 927: 175055, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35644420

RESUMEN

The large-conductance Ca2+-activated K+ channel (BKCa channel) is involved in repolarizing the membrane potential and has a variety of cellular functions. The BKCa channel is highly expressed in bladder smooth muscle and mediates muscle relaxation. Compounds that activate the BKCa channel have therapeutic potential against pathological symptoms associated with the overactivity of bladder smooth muscle. In this regard, we screened a chemical library of 9938 compounds to identify novel BKCa channel activators. A cell-based fluorescence assay identified a structural family of compounds containing a common tricyclic quinazoline ring that activated the BKCa channel. The most potent compound TTQC-1 (7-bromo-N-(3-methylphenyl)-5-oxo-1-thioxo-4,5-dihydro[1,3]thiazolo[3,4-a]quinazoline-3-carboxamide) directly and reversibly activated the macroscopic current of BKCa channels expressed in Xenopus oocytes from both sides of the cellular membrane. TTQC-1 increased the maximum conductance and shifted the half activation voltage to the left. The apparent half-maximal effective concentration and dissociation constant were 2.8 µM and 7.95 µM, respectively. TTQC-1 delayed the kinetics of channel deactivation without affecting channel activation. The activation effects were observed over a wide range of intracellular Ca2+ concentrations and dependent on the co-expression of ß1 and ß4 auxiliary subunits, which are highly expressed in urinary bladder. In the isolated smooth muscle cells of rat urinary bladder, TTQC-1 increased the K+ currents which can be blocked by iberiotoxin. Finally, oral administration of TTQC-1 to hypertensive rats decreased the urination frequency. Therefore, TTQC-1 is a BKCa channel activator with a novel structure that is a potential therapeutic candidate for BKCa channel-related diseases, such as overactive bladder syndrome.


Asunto(s)
Vejiga Urinaria Hiperactiva , Animales , Potenciales de la Membrana , Relajación Muscular , Miocitos del Músculo Liso , Quinazolinas/farmacología , Ratas , Vejiga Urinaria Hiperactiva/tratamiento farmacológico
3.
Bioorg Med Chem Lett ; 43: 128083, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33964448

RESUMEN

A series of 2-amino-5-arylmethyl- or 5-heteroarylmethyl-1,3-thiazole derivatives were synthesized and evaluated for BK channel-opening activities in cell-based fluorescence assay and electrophysiological recording. The assay results indicated that the activities of the investigated compounds were influenced by the physicochemical properties of the substituent at benzene ring.


Asunto(s)
Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Tiazoles/farmacología , Relación Dosis-Respuesta a Droga , Humanos , Estructura Molecular , Relación Estructura-Actividad , Tiazoles/síntesis química , Tiazoles/química
4.
J Neurosci ; 41(24): 5138-5156, 2021 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-33972400

RESUMEN

Protein aggregation can induce explicit neurotoxic events that trigger a number of presently untreatable neurodegenerative disorders. Chaperones, on the other hand, play a neuroprotective role because of their ability to unfold and refold abnormal proteins. The progressive nature of neurotoxic events makes it important to discover endogenous factors that affect pathologic and molecular phenotypes of neurodegeneration in animal models. Here, we identified microtubule-associated protein tau, and chaperones Hsp70 (heat shock protein 70) and DNAJA1 (DJ2) as endogenous substrates of cereblon (CRBN), a substrate-recruiting subunit of cullin4-RING-E3-ligase. This recruitment results in ubiquitin-mediated degradation of tau, Hsp70, and DJ2. Knocking out CRBN enhances the chaperone activity of DJ2, resulting in decreased phosphorylation and aggregation of tau, improved association of tau with microtubules, and reduced accumulation of pathologic tau across brain. Functionally abundant DJ2 could prevent tau aggregation induced by various factors like okadaic acid and heparin. Depletion of CRBN also decreases the activity of tau-kinases including GSK3α/ß, ERK, and p38. Intriguingly, we found a high expression of CRBN and low levels of DJ2 in neuronal tissues of 5XFAD and APP knock-in male mouse models of Alzheimer's disease. This implies that CRBN-mediated DJ2/Hsp70 pathway may be compromised in neurodegeneration. Being one of the primary pathogenic events, elevated CRBN can be a contributing factor for tauopathies. Our data provide a functional link between CRBN and DJ2/Hsp70 chaperone machinery in abolishing the cytotoxicity of aggregation-prone tau and suggest that Crbn-/- mice serve as an animal model of resistance against tauopathies for further exploration of the molecular mechanisms of neurodegeneration.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas del Choque Térmico HSP40/metabolismo , Tauopatías/patología , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas tau/metabolismo , Animales , Línea Celular , Modelos Animales de Enfermedad , Humanos , Masculino , Ratones , Degeneración Nerviosa , Tauopatías/metabolismo
5.
Genes Brain Behav ; 18(5): e12545, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30675754

RESUMEN

The mechanosensory neurons of Drosophila larvae are demonstrably activated by diverse mechanical stimuli, but the mechanisms underlying this function are not completely understood. Here we report a genetic, immunohistochemical, and electrophysiological analysis of the Ppk30 ion channel, a member of the Drosophila pickpocket (ppk) family, counterpart of the mammalian Degenerin/Epithelial Na+ Channel family. Ppk30 mutant larvae displayed deficits in proprioceptive movement and mechanical nociception, which are detected by class IV sensory (mdIV) neurons. The same neurons also detect heat nociception, which was not impaired in ppk30 mutant larvae. Similarly, Ppk30 mutation did not alter gentle touch mechanosensation, a distinct mechanosensation detected by other neurons, suggesting that Ppk30 has a functional role in mechanosensation in mdIV neurons. Consistently, Ppk30 was expressed in class IV neurons, but was not detectable in other larval skin sensory neurons. Mutant phenotypes were rescued by expressing Ppk30 in mdIV neurons. Electrophysiological analysis of heterologous cells expressing Ppk30 did not detect mechanosensitive channel activities, but did detect acid-induced currents. These data show that Ppk30 has a role in mechanosensation, but not in thermosensation, in class IV neurons, and possibly has other functions related to acid response.


Asunto(s)
Proteínas de Drosophila/genética , Nocicepción , Propiocepción , Canales de Sodio/genética , Potenciales de Acción , Animales , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Mecanorreceptores/metabolismo , Mecanorreceptores/fisiología , Canales de Sodio/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...