Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 18(2): 1371-1380, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38060408

RESUMEN

Respiratory masks are the primary and most effective means of protecting individuals from airborne hazards such as droplets and particulate matter during public engagements. However, conventional electrostatically charged melt-blown microfiber masks typically require thick and dense membranes to achieve high filtration efficiency, which in turn cause a significant pressure drop and reduce breathability. In this study, we have developed a multielectrospinning system to address this issue by manipulating the pore structure of nanofiber networks, including the use of uniaxially aligned nanofibers created via an electric-field-guided electrospinning apparatus. In contrast to the common randomly collected microfiber membranes, partially aligned dual-nanofiber membranes, which are fabricated via electrospinning of a random 150 nm nanofiber base layer and a uniaxially aligned 450 nm nanofiber spacer layer on a roll-to-roll collector, offer an efficient way to modulate nanofiber membrane pore structures. Notably, the dual-nanofiber configuration with submicron pore structure exhibits increased fiber density and decreased volume density, resulting in an enhanced filtration efficiency of over 97% and a 50% reduction in pressure drop. This leads to the highest quality factor of 0.0781. Moreover, the submicron pore structure within the nanofiber networks introduces an additional sieving filtration mechanism, ensuring superior filtration efficiency under highly humid conditions and even after washing with a 70% ethanol solution. The nanofiber mask provides a sustainable solution for safeguarding the human respiratory system, as it effectively filters and inactivates human coronaviruses while utilizing 130 times fewer polymeric materials than melt-blown filters. This reusability of our filters and their minimum usage of polymeric materials would significantly reduce plastic waste for a sustainable global society.


Asunto(s)
Filtros de Aire , Nanofibras , Humanos , Nanofibras/química , Filtración , Polímeros
2.
Front Vet Sci ; 9: 989352, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36204297

RESUMEN

Prion diseases are fatal degenerative encephalopathies caused by misfolded prion protein (PrPSc) converted from normal prion protein (PrPC). Previous studies have reported that genetic polymorphisms of the prion protein gene (PRNP) play a critical role in susceptibility to prion diseases. In addition, prion disease-resistant animals showed unique structural features of prion protein (PrP) related to species-specific amino acids. However, investigations of genetic polymorphisms of the PRNP gene and structural characteristics of PrP have not been performed in raccoon dogs thus far. We investigated genetic polymorphisms of PRNP in 87 raccoon dogs using amplicon sequencing and analyzed the genotype, allele, haplotype frequencies, and linkage disequilibrium (LD) using Haploview version 4.2. In addition, we performed phylogenetic analysis and multiple sequence alignment (MSA) using MEGA X version 10.1.8 and Clustal X version 2.1, respectively. We estimated the impact of raccoon dog and Canidae family-specific amino acids using PolyPhen-2, PROVEAN, and AMYCO. Furthermore, we analyzed the effect of raccoon dog and Canidae family-specific amino acids using the AlphaFold2 and Swiss-PdbViewer programs. We found 4 novel single nucleotide polymorphisms (SNPs) of the raccoon dog PRNP gene. In addition, the raccoon dog PrP showed 99.61% identity and the closest genetic distance to dog PrP. Among the substitutions of Canidae-specific amino acids with interspecific amino acids, D163N showed increased amyloidogenic propensity, and R181H showed alterations of hydrogen bonds. Furthermore, electrostatic potentials were changed according to the substitutions of D163N and R181H. By comparing PrP between raccoon dogs and raccoons, R168K and K224R were found to be related to changes in hydrogen bonds, and K224R altered the electrostatic potential of raccoon dog PrP. In the present study, we first reported 4 novel synonymous SNPs of the raccoon dog PRNP gene. We also identified that the PrP of raccoon dog has high homology (99.61%) with PrP of dog, which is a prion-resistant animal. In addition, raccoon dog PrP-specific amino acids are related to low amyloid propensity and inherent characteristics of 3D structure of raccoon dog PrP compared to the PrP of prion-susceptible species.

3.
ACS Appl Mater Interfaces ; 11(14): 13416-13422, 2019 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-30895773

RESUMEN

For flexible devices that inevitably undergo repetitive deformations, it is important to evaluate and control the mechanical strain imposed on the flexible systems for enhancing the reliability. In this paper, a novel experimental method to directly visualize cross-sectional strain distribution in the thin flexible devices is proposed. Digital image correlation (DIC) is effectively adapted by using microscopic images of the cross section for accurate analysis of the microscale deformations. To conduct the DIC strain analysis, speckle patterning is accomplished by using microparticles from diamond-abrasive suspensions with optimized fabrication conditions. First, the cross-sectional micro-DIC analysis is performed successfully for 100 µm-thick substrates. Full-field strain quantification and easy inspection of a neutral plane are demonstrated and compared with results of finite element analysis simulation. Using the presented method, generation of multiple neutral planes is clearly visualized for a trilayer structure with a very soft adhesive midlayer, where strain decoupling occurs by severe shear deformation of the soft adhesive layer. Furthermore, bending strain distribution in a flexible fabric-reinforced polymer (FRP) substrate is also investigated to analyze and predict fatigue fracture in the complex inner structure under repetitive bending loading.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...