Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Clin Cancer Res ; 29(23): 4908-4919, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37733800

RESUMEN

PURPOSE: To explore whether specific triple-negative breast cancer (TNBC) molecular subtypes are predictive for a benefit from maintenance low-dose cyclophosphamide and methotrexate (CM) in the adjuvant IBCSG 22-00 phase III clinical trial. EXPERIMENTAL DESIGN: RNA sequencing was performed on a selection of 347 TNBC formalin-fixed paraffin-embedded (FFPE) tumor samples following a case-cohort-like sampling. TNBC subtypes were computed on gene expression data. The association between TNBC subtypes and treatment outcome was assessed using a Cox proportional-hazards interaction test. RESULTS: Immunomodulatory (IM) and basal-like/immune activated (BLIA) molecular subtypes showed a significant survival benefit when treated with low-dose CM [disease-free survival (DFS): HR, 0.5; 95% confidence interval (CI), 0.28-0.89; Pinteraction = 0.018 and HR, 0.49; 95% CI, 0.27-0.9; Pinteraction = 0.021]. Moreover, a high expression of regulatory T-cell immune signature was associated with a better prognosis in the CM arm, in line with a potential immunomodulating role of cyclophosphamide. In contrast, a worse outcome was observed in tumors with a mesenchymal (M) subtype treated with low-dose CM (DFS: HR, 1.9; 95% CI, 1.2-3; Pinteraction = 0.0044). CONCLUSIONS: Our results show a differential benefit of low-dose CM therapy across different TNBC subtypes. Low-dose CM therapy could be considered as a potential strategy for TNBC tumors with IM subtype in the early-disease setting.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología , Resultado del Tratamiento , Supervivencia sin Enfermedad , Pronóstico , Quimioterapia Adyuvante/métodos , Ciclofosfamida
2.
Biomolecules ; 10(4)2020 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-32260546

RESUMEN

Mesenchymal Stromal Cells (MSC) are multipotent cells characterized by self-renewal, multilineage differentiation, and immunomodulatory properties. To obtain a gene regulatory profile of human MSCs, we generated a compendium of more than two hundred cell samples with genome-wide expression data, including a homogeneous set of 93 samples of five related primary cell types: bone marrow mesenchymal stem cells (BM-MSC), hematopoietic stem cells (HSC), lymphocytes (LYM), fibroblasts (FIB), and osteoblasts (OSTB). All these samples were integrated to generate a regulatory gene network using the algorithm ARACNe (Algorithm for the Reconstruction of Accurate Cellular Networks; based on mutual information), that finds regulons (groups of target genes regulated by transcription factors) and regulators (i.e., transcription factors, TFs). Furtherly, the algorithm VIPER (Algorithm for Virtual Inference of Protein-activity by Enriched Regulon analysis) was used to inference protein activity and to identify the most significant TF regulators, which control the expression profile of the studied cells. Applying these algorithms, a footprint of candidate master regulators of BM-MSCs was defined, including the genes EPAS1, NFE2L1, SNAI2, STAB2, TEAD1, and TULP3, that presented consistent upregulation and hypomethylation in BM-MSCs. These TFs regulate the activation of the genes in the bone marrow MSC lineage and are involved in development, morphogenesis, cell differentiation, regulation of cell adhesion, and cell structure.


Asunto(s)
Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Células Madre Mesenquimatosas/metabolismo , Genómica , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...