Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39265079

RESUMEN

The underlying causes of diabetic kidney disease are still largely unknown. New insights into the contributing causes of diabetic nephropathy are important in order to prevent this complication. Hyperglycemia and hypertension are some of the risk factors for diabetic nephropathy. However, the incidence of diabetic nephropathy is increasing despite efforts to normalize blood-glucose levels and blood pressure. Therefore, other factors should be investigated as causes of diabetic nephropathy. We investigated whether long-term increased plasma levels of glucagon contribute to the development of pathophysiological changes in kidney function as seen in patients with diabetic nephropathy. Using mouse models of chronic activation and inactivation of glucagon receptor signaling, we investigated whether glucagon is involved in changes in renal function, renal structural and transcriptional changes. We found several histopathological changes in the kidney, such as thickening of the parietal layer of Bowman's capsule, glomerular mesangial cell expansion, and significant albuminuria in the mice with activated glucagon receptor signaling. Opposite effects on mesangial area expansion and the development of albuminuria were demonstrated in mice with glucagon receptor inactivation. RNA sequencing data revealed that transcription of genes related to fatty acid metabolism, podocytes, Na+/K+-ATPase, and sodium/glucose transport were significantly changed in mice with activated glucagon receptor signaling. These data implicate that the glucagon receptor signaling is involved in the development of kidney injury, as seen in type 2 diabetes and that glucagon receptor is a potential therapeutic target in the treatment of diabetes.

2.
Commun Biol ; 5(1): 1278, 2022 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-36418521

RESUMEN

Glucagon is a major regulator of metabolism and drugs targeting the glucagon receptor (GCGR) are being developed. Insight into tissue and cell-specific expression of the GCGR is important to understand the biology of glucagon and to differentiate between direct and indirect actions of glucagon. However, it has been challenging to localize the GCGR in tissue due to low expression levels and lack of specific methods. Immunohistochemistry has frequently been used for GCGR localization, but antibodies targeting G-protein-coupled-receptors may be inaccurate. We evaluated all currently commercially available GCGR antibodies. The antibody, ab75240 (Antibody no. 11) was found to perform best among the twelve antibodies tested and using this antibody we found expression of the GCGR in the kidney, liver, preadipocytes, pancreas, and heart. Three antibody-independent approaches all confirmed the presence of the GCGR within the pancreas, liver and the kidneys. GCGR expression should be evaluated by both antibody and antibody-independent approaches.


Asunto(s)
Glucagón , Receptores de Glucagón , Receptores de Glucagón/genética , Receptores de Glucagón/metabolismo , Expresión Génica , Anticuerpos/metabolismo , Hígado/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...