Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Fish Shellfish Immunol ; 147: 109404, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38325590

RESUMEN

Cardiomyopathy syndrome (CMS) caused by piscine myocarditis virus (PMCV) is a severe cardiac disease in Atlantic salmon (Salmo salar) and one of the leading causes of morbidity and mortality in the Norwegian aquaculture industry. Previous research suggest a variation in individual susceptibility to develop severe disease, however the role of the immune response in determining individual outcome of CMS is poorly understood particularly in cases where fish are also challenged by stress. The present study's aim was therefore to characterize cardiac transcriptional responses to PMCV infection in Atlantic salmon responding to infection under stressful conditions with a high versus low degree of histopathological damage. The study was performed as a large-scale controlled experiment of Atlantic salmon smolts from pre-challenge to 12 weeks post infection (wpi) with PMCV, during which fish were exposed to intermittent stressors. RNA sequencing (RNAseq) was used to compare the heart transcriptome of high responders (HR) with atrium histopathology score '4' and low responders (LR) with score '0.5' at 12 wpi. A high-throughput quantitative PCR (qPCR) analysis was used to compare immune gene transcription between individuals sampled at 6, 9 and 12 wpi. Based on RNAseq and qPCR results, RNAscope in situ hybridization (ISH) was performed for visualization of IFN-γ - and IFNb producing immune cells in affected heart tissue. Compared to LR, the transcription of 1592 genes was increased in HR at 12 wpi. Of these genes, around. 40 % were immune-related, including various chemokines, key antiviral response molecules, and genes. associated with a Th1 pro-inflammatory immune response. Further, the qPCR analysis confirmed. increased immune gene transcription in HR at both 9 and 12 wpi, despite a decrease in PMCV. transcription between these time points. Interestingly, increased IFNb transcription in HR suggests the. presence of high-quantity IFN secreting cells in the hearts of these individuals. Indeed, RNAscope. confirmed the presence of IFN-γ and IFNb-positive cells in the heart ventricle of HR but not LR. To conclude, our data indicate that in severe outcomes of PMCV infection various chemokines attract leucocytes to the salmon heart, including IFN-γ and IFNb-secreting cells, and that these cells play important roles in maintaining persistent antiviral responses and a sustained host immunopathology despite decreasing heart viral transcription.


Asunto(s)
Cardiomiopatías , Enfermedades de los Peces , Salmo salar , Totiviridae , Animales , Totiviridae/genética , Cardiomiopatías/genética , Inmunidad Adaptativa , Quimiocinas , Antivirales
2.
Am J Physiol Regul Integr Comp Physiol ; 326(6): R484-R498, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38406842

RESUMEN

Salmonid fish include some of the most valued cultured fish species worldwide. Unlike most other fish, the hearts of salmonids, including Atlantic salmon and rainbow trout, have a well-developed coronary circulation. Consequently, their hearts' reliance on oxygenation through coronary arteries leaves them prone to coronary lesions, believed to precipitate myocardial ischemia. Here, we mimicked such coronary lesions by subjecting groups of juvenile rainbow trout to coronary ligation, assessing histomorphological myocardial changes associated with ischemia and scarring in the context of cardiac arrhythmias using electrocardiography (ECG). Notable ECG changes resembling myocardial ischemia-like ECG in humans, such as atrioventricular blocks and abnormal ventricular depolarization (prolonged and fragmented QRS complex), as well as repolarization (long QT interval) patterns, were observed during the acute phase of myocardial ischemia. A remarkable 100% survival rate was observed among juvenile trout subjected to coronary ligation after 24 wk. Recovery from coronary ligation occurred through adaptive ventricular remodeling, coupled with a fast cardiac revascularization response. These findings carry significant implications for understanding the mechanisms governing cardiac health in salmonid fish, a family particularly susceptible to cardiac diseases. Furthermore, our results provide valuable insights into comparative studies on the evolution, pathophysiology, and ontogeny of vertebrate cardiac repair and restoration.NEW & NOTEWORTHY Juvenile rainbow trout exhibit a remarkable capacity to recover from cardiac injury caused by myocardial ischemia. Recovery from cardiac damage occurs through adaptive ventricular remodeling, coupled with a rapid cardiac revascularization response. These findings carry significant implications for understanding the mechanisms governing cardiac health within salmonid fishes, which are particularly susceptible to cardiac diseases.


Asunto(s)
Isquemia Miocárdica , Oncorhynchus mykiss , Animales , Isquemia Miocárdica/fisiopatología , Insuficiencia Cardíaca/fisiopatología , Remodelación Ventricular , Electrocardiografía , Enfermedades de los Peces/fisiopatología , Enfermedades de los Peces/patología , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...