Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cancer Discov ; 12(9): 2180-2197, 2022 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-35771492

RESUMEN

Pancreatic ductal adenocarcinomas (PDAC) depend on autophagy for survival; however, the metabolic substrates that autophagy provides to drive PDAC progression are unclear. Ferritin, the cellular iron storage complex, is targeted for lysosomal degradation (ferritinophagy) by the selective autophagy adaptor NCOA4, resulting in release of iron for cellular utilization. Using patient-derived and murine models of PDAC, we demonstrate that ferritinophagy is upregulated in PDAC to sustain iron availability, thereby promoting tumor progression. Quantitative proteomics reveals that ferritinophagy fuels iron-sulfur cluster protein synthesis to support mitochondrial homeostasis. Targeting NCOA4 leads to tumor growth delay and prolonged survival but with the development of compensatory iron acquisition pathways. Finally, enhanced ferritinophagy accelerates PDAC tumorigenesis, and an elevated ferritinophagy expression signature predicts for poor prognosis in patients with PDAC. Together, our data reveal that the maintenance of iron homeostasis is a critical function of PDAC autophagy, and we define NCOA4-mediated ferritinophagy as a therapeutic target in PDAC. SIGNIFICANCE: Autophagy and iron metabolism are metabolic dependencies in PDAC. However, targeted therapies for these pathways are lacking. We identify NCOA4-mediated selective autophagy of ferritin ("ferritinophagy") as upregulated in PDAC. Ferritinophagy supports PDAC iron metabolism and thereby tumor progression and represents a new therapeutic target in PDAC. See related commentary by Jain and Amaravadi, p. 2023. See related article by Ravichandran et al., p. 2198. This article is highlighted in the In This Issue feature, p. 2007.


Asunto(s)
Carcinoma Ductal Pancreático , Proteínas Hierro-Azufre , Neoplasias Pancreáticas , Animales , Autofagia/efectos de los fármacos , Autofagia/genética , Disponibilidad Biológica , Carcinoma Ductal Pancreático/genética , Ferritinas/genética , Ferritinas/metabolismo , Humanos , Hierro/metabolismo , Hierro/farmacología , Proteínas Hierro-Azufre/metabolismo , Ratones , Coactivadores de Receptor Nuclear/genética , Coactivadores de Receptor Nuclear/metabolismo , Neoplasias Pancreáticas/genética , Azufre/metabolismo , Factores de Transcripción/metabolismo , Neoplasias Pancreáticas
2.
Dev Cell ; 53(5): 514-529.e3, 2020 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-32425701

RESUMEN

The factors mediating fatal SARS-CoV-2 infections are poorly understood. Here, we show that cigarette smoke causes a dose-dependent upregulation of angiotensin converting enzyme 2 (ACE2), the SARS-CoV-2 receptor, in rodent and human lungs. Using single-cell sequencing data, we demonstrate that ACE2 is expressed in a subset of secretory cells in the respiratory tract. Chronic smoke exposure triggers the expansion of this cell population and a concomitant increase in ACE2 expression. In contrast, quitting smoking decreases the abundance of these secretory cells and reduces ACE2 levels. Finally, we demonstrate that ACE2 expression is responsive to inflammatory signaling and can be upregulated by viral infections or interferon treatment. Taken together, these results may partially explain why smokers are particularly susceptible to severe SARS-CoV-2 infections. Furthermore, our work identifies ACE2 as an interferon-stimulated gene in lung cells, suggesting that SARS-CoV-2 infections could create positive feedback loops that increase ACE2 levels and facilitate viral dissemination.


Asunto(s)
Células Epiteliales Alveolares/metabolismo , Infecciones por Coronavirus/epidemiología , Interferones/metabolismo , Peptidil-Dipeptidasa A/genética , Neumonía Viral/epidemiología , Mucosa Respiratoria/metabolismo , Contaminación por Humo de Tabaco/efectos adversos , Fumar Tabaco/genética , Adulto , Anciano , Enzima Convertidora de Angiotensina 2 , Animales , COVID-19 , Células CACO-2 , Células Cultivadas , Femenino , Células HCT116 , Humanos , Interferones/genética , Masculino , Ratones , Persona de Mediana Edad , Pandemias , Peptidil-Dipeptidasa A/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , RNA-Seq , Ratas , Transducción de Señal , Análisis de la Célula Individual , Fumar Tabaco/epidemiología , Fumar Tabaco/metabolismo , Regulación hacia Arriba
3.
Sci Transl Med ; 11(509)2019 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-31511426

RESUMEN

Ninety-seven percent of drug-indication pairs that are tested in clinical trials in oncology never advance to receive U.S. Food and Drug Administration approval. While lack of efficacy and dose-limiting toxicities are the most common causes of trial failure, the reason(s) why so many new drugs encounter these problems is not well understood. Using CRISPR-Cas9 mutagenesis, we investigated a set of cancer drugs and drug targets in various stages of clinical testing. We show that-contrary to previous reports obtained predominantly with RNA interference and small-molecule inhibitors-the proteins ostensibly targeted by these drugs are nonessential for cancer cell proliferation. Moreover, the efficacy of each drug that we tested was unaffected by the loss of its putative target, indicating that these compounds kill cells via off-target effects. By applying a genetic target-deconvolution strategy, we found that the mischaracterized anticancer agent OTS964 is actually a potent inhibitor of the cyclin-dependent kinase CDK11 and that multiple cancer types are addicted to CDK11 expression. We suggest that stringent genetic validation of the mechanism of action of cancer drugs in the preclinical setting may decrease the number of therapies tested in human patients that fail to provide any clinical benefit.


Asunto(s)
Antineoplásicos/toxicidad , Ensayos Clínicos como Asunto , Sistemas CRISPR-Cas/genética , Línea Celular Tumoral , Células Clonales , Quinasas Ciclina-Dependientes/antagonistas & inhibidores , Quinasas Ciclina-Dependientes/metabolismo , Resistencia a Antineoplásicos/efectos de los fármacos , Técnicas de Inactivación de Genes , Genoma Humano , Humanos , Terapia Molecular Dirigida , Quinolonas/farmacología , Interferencia de ARN/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...