Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Exp Neurol ; 276: 1-4, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26616238

RESUMEN

The neuronal receptor protein tyrosine phosphatase receptor σ (PTPσ) inhibits axonal extension upon binding to chondroitin sulfate proteoglycans (CSPGs) in scar tissue. We recently demonstrated that modulating or deleting PTPσ promoted re-innervation of the CSPG-containing cardiac scar after ischemia-reperfusion (I-R). However, it remains unknown if the lack of PTPσ or early treatment with the PTPσ modulator, intracellular sigma peptide (ISP), prevents the initial injury-induced axonal dieback. To address this, we carried out I-R in PTPσ -/- mice or control littermates treated with ISP or vehicle immediately at the time of I-R, and then assessed sympathetic innervation of the scar and surrounding myocardium 3days later. Vehicle-treated WT controls displayed sympathetic denervation within the scar and viable tissue adjacent to the scar, as well as distal myocardium farther from the scar. PTPσ -/- and ISP-treated animals also displayed denervation of the scar and adjacent tissue, but regions distal to the scar were innervated normally. This suggests that PTPσ does not mediate axonal dieback but its disruption enhances axonal regrowth in the heart. CSPG digestion alters the macrophage response to prevent axonal dieback in spinal neurons, so we investigated whether targeting PTPσ might alter the macrophage response in the heart. The macrophage response after I-R was similar in vehicle and ISP-treated groups. Mice lacking PTPσ trended toward an increased M2 response, but were not significantly different than the other groups. These data suggest that PTPσ is not involved in axonal dieback or the early macrophage response following cardiac I-R.


Asunto(s)
Axones/enzimología , Axones/patología , Infarto del Miocardio/enzimología , Infarto del Miocardio/patología , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores/deficiencia , Animales , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Ratones Transgénicos , Infarto del Miocardio/genética , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores/genética
2.
J Neurosurg Anesthesiol ; 23(4): 335-40, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21908987

RESUMEN

BACKGROUND: Isoflurane exposure can protect the mammalian brain from subsequent insults such as ischemic stroke. However, this protective preconditioning effect is sexually dimorphic, with isoflurane preconditioning decreasing male while exacerbating female brain damage in a mouse model of cerebral ischemia. Emerging evidence suggests that innate cell sex is an important factor in cell death, with brain cells having sex-specific sensitivities to different insults. We used an in vitro model of isoflurane preconditioning and ischemia to test the hypothesis that isoflurane preconditioning protects male astrocytes while having no effect or even a deleterious effect in female astrocytes after subsequent oxygen and glucose deprivation (OGD). METHODS: Sex-segregated astrocyte cultures derived from postnatal day 0 to 1 mice were allowed to reach confluency before being exposed to either 0% (sham preconditioning) or 3% isoflurane preconditioning for 2 hours. Cultures were then returned to normal growth conditions for 22 hours before undergoing 10 hours of OGD. Twenty-four hours after OGD, cell viability was quantified using a lactate dehydrogenase assay. RESULTS: Isoflurane preconditioning increased cell survival after OGD compared with sham preconditioning independent of innate cell sex. CONCLUSION: More studies are needed to determine how cell type and cell sex may impact on anesthetic preconditioning and subsequent ischemic outcomes in the brain.


Asunto(s)
Anestésicos por Inhalación/farmacología , Astrocitos/efectos de los fármacos , Hipoxia de la Célula/fisiología , Glucosa/deficiencia , Isoflurano/farmacología , Animales , Muerte Celular , Supervivencia Celular/efectos de los fármacos , Corteza Cerebral/citología , Corteza Cerebral/fisiología , Femenino , L-Lactato Deshidrogenasa/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Oligodendroglía/efectos de los fármacos , Reacción en Cadena de la Polimerasa , Caracteres Sexuales
3.
Proc Natl Acad Sci U S A ; 104(18): 7558-63, 2007 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-17463082

RESUMEN

Multiple sclerosis (MS) is the leading cause of neurological disability in young adults, affecting some two million people worldwide. Traditionally, MS has been considered a chronic, inflammatory disorder of the central white matter in which ensuing demyelination results in physical disability [Frohman EM, Racke MK, Raine CS (2006) N Engl J Med 354:942-955]. More recently, MS has become increasingly viewed as a neurodegenerative disorder in which neuronal loss, axonal injury, and atrophy of the CNS lead to permanent neurological and clinical disability. Although axonal pathology and loss in MS has been recognized for >100 years, very little is known about the underlying molecular mechanisms. Progressive axonal loss in MS may stem from a cascade of ionic imbalances initiated by inflammation, leading to mitochondrial dysfunction and energetic deficits that result in mitochondrial and cellular Ca2+ overload. In a murine disease model, experimental autoimmune encephalomyelitis (EAE) mice lacking cyclophilin D (CyPD), a key regulator of the mitochondrial permeability transition pore (PTP), developed EAE, but unlike WT mice, they partially recovered. Examination of the spinal cords of CyPD-knockout mice revealed a striking preservation of axons, despite a similar extent of inflammation. Furthermore, neurons prepared from CyPD-knockout animals were resistant to reactive oxygen and nitrogen species thought to mediate axonal damage in EAE and MS, and brain mitochondria lacking CyPD sequestered substantially higher levels of Ca2+. Our results directly implicate pathological activation of the mitochondrial PTP in the axonal damage occurring during MS and identify CyPD, as well as the PTP, as a potential target for MS neuroprotective therapies.


Asunto(s)
Axones/enzimología , Axones/patología , Ciclofilinas/metabolismo , Encefalomielitis Autoinmune Experimental/enzimología , Encefalomielitis Autoinmune Experimental/patología , Esclerosis Múltiple/enzimología , Esclerosis Múltiple/patología , Animales , Encéfalo/metabolismo , Células Cultivadas , Peptidil-Prolil Isomerasa F , Ciclofilinas/deficiencia , Ciclofilinas/genética , Modelos Animales de Enfermedad , Encefalomielitis Autoinmune Experimental/genética , Activación Enzimática , Inflamación/enzimología , Inflamación/genética , Inflamación/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/genética , Mitocondrias/metabolismo , Esclerosis Múltiple/genética , Nitrógeno/metabolismo , Fosforilación , Especies Reactivas de Oxígeno/metabolismo
4.
Mol Cell Biochem ; 270(1-2): 63-9, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15792354

RESUMEN

Chronic hypertension results in cardiac hypertrophy and may lead to congestive heart failure. The protein kinase C (PKC) family has been identified as a signaling component promoting cardiac hypertrophy. We hypothesized that PKC activation may play a role mediating hypertrophy in the spontaneously hypertensive heart failure (SHHF) rat heart. Six-month-old SHHF and normotensive control Wistar Furth (WF) rats were used. Hypertension and cardiac hypertrophy were confirmed in SHHF rats. PKC expression and activation were analyzed by Western blots using isozyme-specific antibodies. Compared to WF, untreated SHHF rats had increased phospho-active alpha (10-fold), delta (4-fold), and epsilon (3-fold) isozyme expression. Furthermore, we analyzed the effect of an angiotensin II type 1 receptor blocker (ARB) and hydralazine (Hy) on PKC regulation in SHHF rat left ventricle (LV). Both the ARB and Hy normalized LV blood pressure, but only the ARB reduced heart mass. Neither treatment affected PKC expression or activity. Our data show differential activation of PKC in the hypertensive, hypertrophic SHHF rat heart. Regression of hypertrophy elicited by an ARB in this model occurred independently of changes in the expression and activity of the PKC isoforms examined.


Asunto(s)
Corazón/fisiología , Hipertensión/enzimología , Hipertrofia/enzimología , Miocardio/enzimología , Proteína Quinasa C/química , Bloqueadores del Receptor Tipo 1 de Angiotensina II/farmacología , Animales , Western Blotting , Activación Enzimática , Femenino , Ventrículos Cardíacos/metabolismo , Hidralazina/farmacología , Miocardio/patología , Fosforilación , Isoformas de Proteínas , Proteína Quinasa C/biosíntesis , Proteína Quinasa C-alfa , Proteína Quinasa C-delta , Proteína Quinasa C-epsilon , Ratas , Ratas Endogámicas SHR , Ratas Endogámicas WF , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...