Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nature ; 628(8008): 657-663, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38509367

RESUMEN

In response to pathogen infection, gasdermin (GSDM) proteins form membrane pores that induce a host cell death process called pyroptosis1-3. Studies of human and mouse GSDM pores have revealed the functions and architectures of assemblies comprising 24 to 33 protomers4-9, but the mechanism and evolutionary origin of membrane targeting and GSDM pore formation remain unknown. Here we determine a structure of a bacterial GSDM (bGSDM) pore and define a conserved mechanism of pore assembly. Engineering a panel of bGSDMs for site-specific proteolytic activation, we demonstrate that diverse bGSDMs form distinct pore sizes that range from smaller mammalian-like assemblies to exceptionally large pores containing more than 50 protomers. We determine a cryo-electron microscopy structure of a Vitiosangium bGSDM in an active 'slinky'-like oligomeric conformation and analyse bGSDM pores in a native lipid environment to create an atomic-level model of a full 52-mer bGSDM pore. Combining our structural analysis with molecular dynamics simulations and cellular assays, our results support a stepwise model of GSDM pore assembly and suggest that a covalently bound palmitoyl can leave a hydrophobic sheath and insert into the membrane before formation of the membrane-spanning ß-strand regions. These results reveal the diversity of GSDM pores found in nature and explain the function of an ancient post-translational modification in enabling programmed host cell death.


Asunto(s)
Gasderminas , Myxococcales , Microscopía por Crioelectrón , Gasderminas/química , Gasderminas/metabolismo , Gasderminas/ultraestructura , Interacciones Hidrofóbicas e Hidrofílicas , Lípidos de la Membrana/química , Lípidos de la Membrana/metabolismo , Simulación de Dinámica Molecular , Myxococcales/química , Myxococcales/citología , Myxococcales/ultraestructura , Estructura Cuaternaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Proteolisis , Piroptosis
2.
Nature ; 625(7994): 360-365, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37992757

RESUMEN

Bacteria encode hundreds of diverse defence systems that protect them from viral infection and inhibit phage propagation1-5. Gabija is one of the most prevalent anti-phage defence systems, occurring in more than 15% of all sequenced bacterial and archaeal genomes1,6,7, but the molecular basis of how Gabija defends cells from viral infection remains poorly understood. Here we use X-ray crystallography and cryo-electron microscopy (cryo-EM) to define how Gabija proteins assemble into a supramolecular complex of around 500 kDa that degrades phage DNA. Gabija protein A (GajA) is a DNA endonuclease that tetramerizes to form the core of the anti-phage defence complex. Two sets of Gabija protein B (GajB) dimers dock at opposite sides of the complex and create a 4:4 GajA-GajB assembly (hereafter, GajAB) that is essential for phage resistance in vivo. We show that a phage-encoded protein, Gabija anti-defence 1 (Gad1), directly binds to the Gabija GajAB complex and inactivates defence. A cryo-EM structure of the virally inhibited state shows that Gad1 forms an octameric web that encases the GajAB complex and inhibits DNA recognition and cleavage. Our results reveal the structural basis of assembly of the Gabija anti-phage defence complex and define a unique mechanism of viral immune evasion.


Asunto(s)
Bacterias , Proteínas Bacterianas , Bacteriófagos , Evasión Inmune , Multimerización de Proteína , Bacterias/genética , Bacterias/inmunología , Bacterias/metabolismo , Bacterias/virología , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/ultraestructura , Bacteriófagos/genética , Bacteriófagos/inmunología , Bacteriófagos/metabolismo , Microscopía por Crioelectrón , Cristalografía por Rayos X , Desoxirribonucleasas/química , Desoxirribonucleasas/metabolismo , Desoxirribonucleasas/ultraestructura , ADN Viral/química , ADN Viral/metabolismo , ADN Viral/ultraestructura
3.
bioRxiv ; 2023 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-37398489

RESUMEN

Caspase recruitment domains (CARDs) and pyrin domains are important facilitators of inflammasome activity and pyroptosis. Upon pathogen recognition by NLR proteins, CARDs recruit and activate caspases, which, in turn, activate gasdermin pore forming proteins to and induce pyroptotic cell death. Here we show that CARD-like domains are present in defense systems that protect bacteria against phage. The bacterial CARD is essential for protease-mediated activation of certain bacterial gasdermins, which promote cell death once phage infection is recognized. We further show that multiple anti-phage defense systems utilize CARD-like domains to activate a variety of cell death effectors. We find that these systems are triggered by a conserved immune evasion protein that phages use to overcome the bacterial defense system RexAB, demonstrating that phage proteins inhibiting one defense system can activate another. We also detect a phage protein with a predicted CARD-like structure that can inhibit the CARD-containing bacterial gasdermin system. Our results suggest that CARD domains represent an ancient component of innate immune systems conserved from bacteria to humans, and that CARD-dependent activation of gasdermins is conserved in organisms across the tree of life.

4.
Cell Rep ; 42(8): 112878, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37494187

RESUMEN

Viruses acquire host genes via horizontal transfer and can express them to manipulate host biology during infections. Some homologs retain sequence identity, but evolutionary divergence can obscure host origins. We use structural modeling to compare vaccinia virus proteins with metazoan proteomes. We identify vaccinia A47L as a homolog of gasdermins, the executioners of pyroptosis. An X-ray crystal structure of A47 confirms this homology, and cell-based assays reveal that A47 interferes with caspase function. We also identify vaccinia C1L as the product of a cryptic gene fusion event coupling a Bcl-2-related fold with a pyrin domain. C1 associates with components of the inflammasome, a cytosolic innate immune sensor involved in pyroptosis, yet paradoxically enhances inflammasome activity, suggesting differential modulation during infections. Our findings demonstrate the increasing power of structural homology screens to reveal proteins with unique combinations of domains that viruses capture from host genes and combine in unique ways.


Asunto(s)
Poxviridae , Vaccinia , Virus , Animales , Inflamasomas/metabolismo , Poxviridae/genética , Virus Vaccinia/metabolismo , Virus/metabolismo
5.
bioRxiv ; 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37131678

RESUMEN

In response to pathogen infection, gasdermin (GSDM) proteins form membrane pores that induce a host cell death process called pyroptosis1-33. Studies of human and mouse GSDM pores reveal the functions and architectures of 24-33 protomers assemblies4-9, but the mechanism and evolutionary origin of membrane targeting and GSDM pore formation remain unknown. Here we determine a structure of a bacterial GSDM (bGSDM) pore and define a conserved mechanism of pore assembly. Engineering a panel of bGSDMs for site-specific proteolytic activation, we demonstrate that diverse bGSDMs form distinct pore sizes that range from smaller mammalian-like assemblies to exceptionally large pores containing >50 protomers. We determine a 3.3 Å cryo-EM structure of a Vitiosangium bGSDM in an active slinky-like oligomeric conformation and analyze bGSDM pores in a native lipid environment to create an atomic-level model of a full 52-mer bGSDM pore. Combining our structural analysis with molecular dynamics simulations and cellular assays, our results support a stepwise model of GSDM pore assembly and suggest that a covalently bound palmitoyl can leave a hydrophobic sheath and insert into the membrane before formation of the membrane-spanning ß-strand regions. These results reveal the diversity of GSDM pores found in nature and explain the function of an ancient post-translational modification in enabling programmed host cell death.

6.
bioRxiv ; 2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-36909515

RESUMEN

Viruses acquire host genes via horizontal gene transfer and can express them to manipulate host biology during infections. Some viral and host homologs retain sequence identity, but evolutionary divergence can obscure host origins. We used structural modeling to compare vaccinia virus proteins with metazoan proteomes. We identified vaccinia A47L as a homolog of gasdermins, the executioners of pyroptosis. An X-ray crystal structure of A47 confirmed this homology and cell-based assays revealed that A47 inhibits pyroptosis. We also identified vaccinia C1L as the product of a cryptic gene fusion event coupling a Bcl-2 related fold with a pyrin domain. C1 associates with components of the inflammasome, a cytosolic innate immune sensor involved in pyroptosis, yet paradoxically enhances inflammasome activity, suggesting a benefit to poxvirus replication in some circumstances. Our findings demonstrate the potential of structural homology screens to reveal genes that viruses capture from hosts and repurpose to benefit viral fitness.

7.
Cell ; 186(5): 987-998.e15, 2023 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-36764290

RESUMEN

RADAR is a two-protein bacterial defense system that was reported to defend against phage by "editing" messenger RNA. Here, we determine cryo-EM structures of the RADAR defense complex, revealing RdrA as a heptameric, two-layered AAA+ ATPase and RdrB as a dodecameric, hollow complex with twelve surface-exposed deaminase active sites. RdrA and RdrB join to form a giant assembly up to 10 MDa, with RdrA docked as a funnel over the RdrB active site. Surprisingly, our structures reveal an RdrB active site that targets mononucleotides. We show that RdrB catalyzes ATP-to-ITP conversion in vitro and induces the massive accumulation of inosine mononucleotides during phage infection in vivo, limiting phage replication. Our results define ATP mononucleotide deamination as a determinant of RADAR immunity and reveal supramolecular assembly of a nucleotide-modifying machine as a mechanism of anti-phage defense.


Asunto(s)
Bacteriófagos , Bacteriófagos/metabolismo , Microscopía por Crioelectrón/métodos , ATPasas Asociadas con Actividades Celulares Diversas , Adenosina Trifosfato , Adenosina Desaminasa/metabolismo
8.
PLoS Pathog ; 18(10): e1010879, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36301823

Asunto(s)
Muerte Celular
9.
Science ; 375(6577): 221-225, 2022 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-35025633

RESUMEN

Gasdermin proteins form large membrane pores in human cells that release immune cytokines and induce lytic cell death. Gasdermin pore formation is triggered by caspase-mediated cleavage during inflammasome signaling and is critical for defense against pathogens and cancer. We discovered gasdermin homologs encoded in bacteria that defended against phages and executed cell death. Structures of bacterial gasdermins revealed a conserved pore-forming domain that was stabilized in the inactive state with a buried lipid modification. Bacterial gasdermins were activated by dedicated caspase-like proteases that catalyzed site-specific cleavage and the removal of an inhibitory C-terminal peptide. Release of autoinhibition induced the assembly of large and heterogeneous pores that disrupted membrane integrity. Thus, pyroptosis is an ancient form of regulated cell death shared between bacteria and animals.


Asunto(s)
Bacterias/química , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Bacteriófagos/fisiología , Piroptosis , Proteínas Reguladoras de la Apoptosis/química , Proteínas Reguladoras de la Apoptosis/metabolismo , Bacterias/metabolismo , Bacterias/virología , Bradyrhizobium/química , Membrana Celular/metabolismo , Cristalografía por Rayos X , Cytophagaceae/química , Modelos Moleculares , Myxococcales/química , Fragmentos de Péptidos/metabolismo , Péptido Hidrolasas/metabolismo , Conformación Proteica , Conformación Proteica en Hélice alfa , Dominios Proteicos
10.
Cell ; 184(12): 3109-3124.e22, 2021 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-34004145

RESUMEN

Glycans modify lipids and proteins to mediate inter- and intramolecular interactions across all domains of life. RNA is not thought to be a major target of glycosylation. Here, we challenge this view with evidence that mammals use RNA as a third scaffold for glycosylation. Using a battery of chemical and biochemical approaches, we found that conserved small noncoding RNAs bear sialylated glycans. These "glycoRNAs" were present in multiple cell types and mammalian species, in cultured cells, and in vivo. GlycoRNA assembly depends on canonical N-glycan biosynthetic machinery and results in structures enriched in sialic acid and fucose. Analysis of living cells revealed that the majority of glycoRNAs were present on the cell surface and can interact with anti-dsRNA antibodies and members of the Siglec receptor family. Collectively, these findings suggest the existence of a direct interface between RNA biology and glycobiology, and an expanded role for RNA in extracellular biology.


Asunto(s)
Membrana Celular/metabolismo , Polisacáridos/metabolismo , ARN/metabolismo , Animales , Anticuerpos/metabolismo , Secuencia de Bases , Vías Biosintéticas , Línea Celular , Supervivencia Celular , Humanos , Espectrometría de Masas , Ácido N-Acetilneuramínico/metabolismo , Poliadenilación , Polisacáridos/química , ARN/química , ARN/genética , ARN no Traducido/metabolismo , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico/metabolismo , Coloración y Etiquetado
11.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33479166

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a beta-CoV that recently emerged as a human pathogen and is the causative agent of the COVID-19 pandemic. A molecular framework of how the virus manipulates host cellular machinery to facilitate infection remains unclear. Here, we focus on SARS-CoV-2 NSP1, which is proposed to be a virulence factor that inhibits protein synthesis by directly binding the human ribosome. We demonstrate biochemically that NSP1 inhibits translation of model human and SARS-CoV-2 messenger RNAs (mRNAs). NSP1 specifically binds to the small (40S) ribosomal subunit, which is required for translation inhibition. Using single-molecule fluorescence assays to monitor NSP1-40S subunit binding in real time, we determine that eukaryotic translation initiation factors (eIFs) allosterically modulate the interaction of NSP1 with ribosomal preinitiation complexes in the absence of mRNA. We further elucidate that NSP1 competes with RNA segments downstream of the start codon to bind the 40S subunit and that the protein is unable to associate rapidly with 80S ribosomes assembled on an mRNA. Collectively, our findings support a model where NSP1 proteins from viruses in at least two subgenera of beta-CoVs associate with the open head conformation of the 40S subunit to inhibit an early step of translation, by preventing accommodation of mRNA within the entry channel.


Asunto(s)
COVID-19/genética , COVID-19/metabolismo , COVID-19/virología , ARN Mensajero/metabolismo , Ribosomas/metabolismo , SARS-CoV-2/metabolismo , Proteínas no Estructurales Virales/metabolismo , Factores Eucarióticos de Iniciación/metabolismo , Humanos , Pandemias , Iniciación de la Cadena Peptídica Traduccional/genética , Biosíntesis de Proteínas , Procesamiento Proteico-Postraduccional , ARN Mensajero/genética , ARN Viral/genética , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , Ribosomas/genética , SARS-CoV-2/genética , SARS-CoV-2/patogenicidad , Proteínas no Estructurales Virales/genética
12.
Nucleic Acids Res ; 48(13): 7279-7297, 2020 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-32463448

RESUMEN

In order to maintain cellular protein homeostasis, ribosomes are safeguarded against dysregulation by myriad processes. Remarkably, many cell types can withstand genetic lesions of certain ribosomal protein genes, some of which are linked to diverse cellular phenotypes and human disease. Yet the direct and indirect consequences from these lesions are poorly understood. To address this knowledge gap, we studied in vitro and cellular consequences that follow genetic knockout of the ribosomal proteins RPS25 or RACK1 in a human cell line, as both proteins are implicated in direct translational control. Prompted by the unexpected detection of an off-target ribosome alteration in the RPS25 knockout, we closely interrogated cellular phenotypes. We found that multiple RPS25 knockout clones display viral- and toxin-resistance phenotypes that cannot be rescued by functional cDNA expression, suggesting that RPS25 loss elicits a cell state transition. We characterized this state and found that it underlies pleiotropic phenotypes and has a common rewiring of gene expression. Rescuing RPS25 expression by genomic locus repair failed to correct for the phenotypic and expression hysteresis. Our findings illustrate how the elasticity of cells to a ribosome perturbation can drive specific phenotypic outcomes that are indirectly linked to translation and suggests caution in the interpretation of ribosomal protein gene mutation data.


Asunto(s)
Mutación con Pérdida de Función , Fenotipo , Proteínas Ribosómicas/genética , Línea Celular Tumoral , Células HEK293 , Humanos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteostasis , Receptores de Cinasa C Activada/genética , Receptores de Cinasa C Activada/metabolismo , Proteínas Ribosómicas/metabolismo , Ribosomas/genética , Ribosomas/metabolismo
13.
Nature ; 573(7775): 605-608, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31534220

RESUMEN

Translation initiation determines both the quantity and identity of the protein that is encoded in an mRNA by establishing the reading frame for protein synthesis. In eukaryotic cells, numerous translation initiation factors prepare ribosomes for polypeptide synthesis; however, the underlying dynamics of this process remain unclear1,2. A central question is how eukaryotic ribosomes transition from translation initiation to elongation. Here we use in vitro single-molecule fluorescence microscopy approaches in a purified yeast Saccharomyces cerevisiae translation system to monitor directly, in real time, the pathways of late translation initiation and the transition to elongation. This transition was slower in our eukaryotic system than that reported for Escherichia coli3-5. The slow entry to elongation was defined by a long residence time of eukaryotic initiation factor 5B (eIF5B) on the 80S ribosome after the joining of individual ribosomal subunits-a process that is catalysed by this universally conserved initiation factor. Inhibition of the GTPase activity of eIF5B after the joining of ribosomal subunits prevented the dissociation of eIF5B from the 80S complex, thereby preventing elongation. Our findings illustrate how the dissociation of eIF5B serves as a kinetic checkpoint for the transition from initiation to elongation, and how its release may be governed by a change in the conformation of the ribosome complex that triggers GTP hydrolysis.


Asunto(s)
Factores Eucarióticos de Iniciación/metabolismo , Extensión de la Cadena Peptídica de Translación/genética , Ribosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Activación Enzimática , Factores Eucarióticos de Iniciación/química , Factores Eucarióticos de Iniciación/genética , Microscopía Fluorescente , Unión Proteica , Conformación Proteica , Ribosomas/química , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética
14.
Nat Microbiol ; 4(12): 2369-2382, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31384002

RESUMEN

Flaviviruses, including dengue virus (DENV) and Zika virus (ZIKV), cause severe human disease. Co-opting cellular factors for viral translation and viral genome replication at the endoplasmic reticulum is a shared replication strategy, despite different clinical outcomes. Although the protein products of these viruses have been studied in depth, how the RNA genomes operate inside human cells is poorly understood. Using comprehensive identification of RNA-binding proteins by mass spectrometry (ChIRP-MS), we took an RNA-centric viewpoint of flaviviral infection and identified several hundred proteins associated with both DENV and ZIKV genomic RNA in human cells. Genome-scale knockout screens assigned putative functional relevance to the RNA-protein interactions observed by ChIRP-MS. The endoplasmic-reticulum-localized RNA-binding proteins vigilin and ribosome-binding protein 1 directly bound viral RNA and each acted at distinct stages in the life cycle of flaviviruses. Thus, this versatile strategy can elucidate features of human biology that control the pathogenesis of clinically relevant viruses.


Asunto(s)
Infecciones por Flavivirus/virología , Flavivirus/genética , Flavivirus/fisiología , ARN Viral/genética , Sistemas CRISPR-Cas , Proteínas Portadoras , Línea Celular , Virus del Dengue/genética , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Flavivirus/patogenicidad , Técnicas de Inactivación de Genes , Interacciones Huésped-Patógeno/genética , Humanos , ARN Viral/metabolismo , Proteínas de Unión al ARN/genética , Replicación Viral , Virus Zika/genética
15.
RNA ; 25(7): 881-895, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31023766

RESUMEN

Receptor for activated C kinase 1 (RACK1) is a eukaryote-specific ribosomal protein (RP) implicated in diverse biological functions. To engineer ribosomes for specific fluorescent labeling, we selected RACK1 as a target given its location on the small ribosomal subunit and other properties. However, prior results suggested that RACK1 has roles both on and off the ribosome, and such an exchange might be related to its various cellular functions and hinder our ability to use RACK1 as a stable fluorescent tag for the ribosome. In addition, the kinetics of spontaneous exchange of RACK1 or any RP from a mature ribosome in vitro remain unclear. To address these issues, we engineered fluorescently labeled human ribosomes via RACK1, and applied bulk and single-molecule biochemical analyses to track RACK1 on and off the human ribosome. Our results demonstrate that, despite its cellular nonessentiality from yeast to humans, RACK1 readily reassociates with the ribosome, displays limited conformational dynamics, and remains stably bound to the ribosome for hours in vitro. This work sheds insight into the biochemical basis of RPs exchange on and off a mature ribosome and provides tools for single-molecule analysis of human translation.


Asunto(s)
Proteínas de Neoplasias/metabolismo , Biosíntesis de Proteínas , Receptores de Cinasa C Activada/metabolismo , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo , Saccharomyces cerevisiae/metabolismo , Células HeLa , Humanos , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Unión Proteica , Receptores de Cinasa C Activada/química , Receptores de Cinasa C Activada/genética , Proteínas Ribosómicas/genética , Saccharomyces cerevisiae/genética
16.
Nucleic Acids Res ; 46(2): e8, 2018 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-29136179

RESUMEN

Human translation initiation relies on the combined activities of numerous ribosome-associated eukaryotic initiation factors (eIFs). The largest factor, eIF3, is an ∼800 kDa multiprotein complex that orchestrates a network of interactions with the small 40S ribosomal subunit, other eIFs, and mRNA, while participating in nearly every step of initiation. How these interactions take place during the time course of translation initiation remains unclear. Here, we describe a method for the expression and affinity purification of a fluorescently-tagged eIF3 from human cells. The tagged eIF3 dodecamer is structurally intact, functions in cell-based assays, and interacts with the HCV IRES mRNA and the 40S-IRES complex in vitro. By tracking the binding of single eIF3 molecules to the HCV IRES RNA with a zero-mode waveguides-based instrument, we show that eIF3 samples both wild-type IRES and an IRES that lacks the eIF3-binding region, and that the high-affinity eIF3-IRES interaction is largely determined by slow dissociation kinetics. The application of single-molecule methods to more complex systems involving eIF3 may unveil dynamics underlying mRNA selection and ribosome loading during human translation initiation.


Asunto(s)
Factor 3 de Iniciación Eucariótica/metabolismo , Colorantes Fluorescentes/química , Imagen Individual de Molécula/métodos , Análisis Espectral/métodos , Factor 3 de Iniciación Eucariótica/química , Factor 3 de Iniciación Eucariótica/genética , Hepacivirus/genética , Humanos , Sitios Internos de Entrada al Ribosoma/genética , Biosíntesis de Proteínas , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Viral/genética , ARN Viral/metabolismo , Reproducibilidad de los Resultados , Subunidades Ribosómicas Pequeñas de Eucariotas/genética , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo
17.
Elife ; 62017 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-28524820

RESUMEN

Cytoplasmic dyneins are motor proteins in the AAA+ superfamily that transport cellular cargos toward microtubule minus-ends. Recently, ciliobrevins were reported as selective cell-permeable inhibitors of cytoplasmic dyneins. As is often true for first-in-class inhibitors, the use of ciliobrevins has in part been limited by low potency. Moreover, suboptimal chemical properties, such as the potential to isomerize, have hindered efforts to improve ciliobrevins. Here, we characterized the structure of ciliobrevins and designed conformationally constrained isosteres. These studies identified dynapyrazoles, inhibitors more potent than ciliobrevins. At single-digit micromolar concentrations dynapyrazoles block intraflagellar transport in the cilium and lysosome motility in the cytoplasm, processes that depend on cytoplasmic dyneins. Further, we find that while ciliobrevins inhibit both dynein's microtubule-stimulated and basal ATPase activity, dynapyrazoles strongly block only microtubule-stimulated activity. Together, our studies suggest that chemical-structure-based analyses can lead to inhibitors with improved properties and distinct modes of inhibition.


Asunto(s)
Dineínas/antagonistas & inhibidores , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/metabolismo , Pirazoles/síntesis química , Pirazoles/metabolismo , Cristalografía por Rayos X , Inhibidores Enzimáticos/química , Humanos , Estructura Molecular , Pirazoles/química , Quinazolinonas/química
18.
Artículo en Inglés | MEDLINE | ID: mdl-28138065

RESUMEN

Viral internal ribosome entry sites (IRESs) are unique RNA elements, which use stable and dynamic RNA structures to recruit ribosomes and drive protein synthesis. IRESs overcome the high complexity of the canonical eukaryotic translation initiation pathway, often functioning with a limited set of eukaryotic initiation factors. The simplest types of IRESs are typified by the cricket paralysis virus intergenic region (CrPV IGR) and hepatitis C virus (HCV) IRESs, both of which independently form high-affinity complexes with the small (40S) ribosomal subunit and bypass the molecular processes of cap-binding and scanning. Owing to their simplicity and ribosomal affinity, the CrPV and HCV IRES have been important models for structural and functional studies of the eukaryotic ribosome during initiation, serving as excellent targets for recent technological breakthroughs in cryogenic electron microscopy (cryo-EM) and single-molecule analysis. High-resolution structural models of ribosome : IRES complexes, coupled with dynamics studies, have clarified decades of biochemical research and provided an outline of the conformational and compositional trajectory of the ribosome during initiation. Here we review recent progress in the study of HCV- and CrPV-type IRESs, highlighting important structural and dynamics insights and the synergy between cryo-EM and single-molecule studies.This article is part of the themed issue 'Perspectives on the ribosome'.


Asunto(s)
Microscopía por Crioelectrón/métodos , Dicistroviridae/genética , Hepacivirus/genética , Sitios Internos de Entrada al Ribosoma/genética , ARN Viral/genética , Imagen Individual de Molécula/métodos , Dicistroviridae/química , Hepacivirus/química , Conformación Molecular , Biosíntesis de Proteínas , ARN Viral/química
19.
J Am Chem Soc ; 134(32): 13348-56, 2012 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-22853802

RESUMEN

Dyotropic rearrangements of fused, tricyclic ß-lactones are described that proceed via unprecedented stereospecific, 1,2-acyl migrations delivering bridged, spiro-γ-butyrolactones. A unique example of this dyotropic process involves a fused bis-lactone possessing both ß- and δ-lactone moieties which enabled rapid access to the core structures of curcumanolide A and curcumalactone. Our current mechanistic understanding of the latter dyotropic process, based on computational studies, is also described. Other key transformations in the described divergent syntheses of (-)-curcumanolide A and (-)-curcumalactone from a common intermediate (11 and 12 steps from 2-methyl-1,3-cyclopentanedione, respectively), include a catalytic, asymmetric nucleophile (Lewis base)-catalyzed aldol-lactonization (NCAL) leading to a tricyclic ß-lactone, a Baeyer-Villiger oxidation in the presence of a ß-lactone, and highly facial-selective and stereocomplementary reductions of an intermediate spirocyclic enoate. The described dyotropic rearrangements significantly alter the topology of the starting tricyclic ß-lactone, providing access to complex spirocyclic cyclopentyl-γ-lactones and bis-γ-lactones in a single synthetic operation.


Asunto(s)
Lactonas/química , Sesquiterpenos/química , Ciclización , Estructura Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...