Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Environ Health Insights ; 8(Suppl 1): 31-9, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25525369

RESUMEN

INTRODUCTION: Increasing number of stretch-shortening contractions (SSCs) results in increased muscle injury. METHODS: Fischer Hybrid rats were acutely exposed to an increasing number of SSCs in vivo using a custom-designed dynamometer. Magnetic resonance imaging (MRI) imaging was conducted 72 hours after exposure when rats were infused with Prohance and imaged using a 7T rodent MRI system (GE Epic 12.0). Images were acquired in the transverse plane with typically 60 total slices acquired covering the entire length of the hind legs. Rats were euthanized after MRI, the lower limbs removed, and tibialis anterior muscles were prepared for histology and quantified stereology. RESULTS: Stereological analyses showed myofiber degeneration, and cellular infiltrates significantly increased following 70 and 150 SSC exposure compared to controls. MRI images revealed that the percent affected area significantly increased with exposure in all SSC groups in a graded fashion. Signal intensity also significantly increased with increasing SSC repetitions. DISCUSSION: These results suggest that contrast-enhanced MRI has the sensitivity to differentiate specific degrees of skeletal muscle strain injury, and imaging data are specifically representative of cellular histopathology quantified via stereological analyses.

2.
Alcohol Clin Exp Res ; 34(1): 98-111, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19860813

RESUMEN

BACKGROUND: This magnetic resonance microscopy (MRM)-based report is the second in a series designed to illustrate the spectrum of craniofacial and central nervous system (CNS) dysmorphia resulting from single- and multiple-day maternal ethanol treatment. The study described in this report examined the consequences of ethanol exposure on gestational day (GD) 7 in mice, a time in development when gastrulation and neural plate development begins; corresponding to the mid- to late third week postfertilization in humans. Acute GD 7 ethanol exposure in mice has previously been shown to result in CNS defects consistent with holoprosencephaly (HPE) and craniofacial anomalies typical of those in Fetal Alcohol Syndrome (FAS). MRM has facilitated further definition of the range of GD 7 ethanol-induced defects. METHODS: C57Bl/6J female mice were intraperitoneally (i.p.) administered vehicle or 2 injections of 2.9 g/kg ethanol on day 7 of pregnancy. Stage-matched control and ethanol-exposed GD 17 fetuses selected for imaging were immersion fixed in a Bouins/Prohance solution. MRM was conducted at either 7.0 Tesla (T) or 9.4 T. Resulting 29 microm isotropic spatial resolution scans were segmented and reconstructed to provide 3D images. Linear and volumetric brain measures, as well as morphological features, were compared for control and ethanol-exposed fetuses. Following MRM, selected specimens were processed for routine histology and light microscopic examination. RESULTS: Gestational day 7 ethanol exposure resulted in a spectrum of median facial and forebrain deficiencies, as expected. This range of abnormalities falls within the HPE spectrum; a spectrum for which facial dysmorphology is consistent with and typically is predictive of that of the forebrain. In addition, other defects including median facial cleft, cleft palate, micrognathia, pituitary agenesis, and third ventricular dilatation were identified. MRM analyses also revealed cerebral cortical dysplasia/heterotopias resulting from this acute, early insult and facilitated a subsequent focused histological investigation of these defects. CONCLUSIONS: Individual MRM scans and 3D reconstructions of fetal mouse brains have facilitated demonstration of a broad range of GD 7 ethanol-induced morphological abnormality. These results, including the discovery of cerebral cortical heterotopias, elucidate the teratogenic potential of ethanol insult during the third week of human prenatal development.


Asunto(s)
Encéfalo/anomalías , Encéfalo/efectos de los fármacos , Etanol/toxicidad , Edad Gestacional , Imagen por Resonancia Magnética , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Factores de Edad , Animales , Femenino , Imagen por Resonancia Magnética/métodos , Ratones , Ratones Endogámicos C57BL , Microscopía/métodos , Embarazo , Efectos Tardíos de la Exposición Prenatal/patología
3.
Alcohol Clin Exp Res ; 33(6): 1001-11, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19302087

RESUMEN

BACKGROUND: Magnetic resonance microscopy (MRM), magnetic resonance imaging (MRI) at microscopic levels, provides unprecedented opportunities to aid in defining the full spectrum of ethanol's insult to the developing brain. This is the first in a series of reports that, collectively, will provide an MRM-based atlas of developmental stage-dependent structural brain abnormalities in a Fetal Alcohol Spectrum Disorders (FASD) mouse model. The ethanol exposure time and developmental stage examined for this report is gestational day (GD) 8 in mice, when the embryos are at early neurulation stages; stages present in humans early in the fourth week postfertilization. METHODS: For this study, pregnant C57Bl/6J mice were administered an ethanol dosage of 2.8 g/kg intraperitoneally at 8 days, 0 hour and again at 8 days, 4 hours postfertilization. On GD 17, fetuses that were selected for MRM analyses were immersion fixed in a Bouin's/Prohance solution. Control fetuses from vehicle-treated dams were stage-matched to those that were ethanol-exposed. The fetal mice were scanned ex vivo at 7.0 T and 512 x 512 x 1024 image arrays were acquired using 3-D spin warp encoding. The resulting 29 microm (isotropic) resolution images were processed using ITK-SNAP, a 3-D segmentation/visualization tool. Linear and volume measurements were determined for selected brain, head, and body regions of each specimen. Comparisons were made between control and treated fetuses, with an emphasis on determining (dis)proportionate changes in specific brain regions. RESULTS: As compared with controls, the crown-rump lengths of stage-matched ethanol-exposed GD 17 fetuses were significantly reduced, as were brain and whole body volumes. Volume reductions were notable in every brain region examined, with the exception of the pituitary and septal region, and were accompanied by increased ventricular volumes. Disproportionate regional brain volume reductions were most marked on the right side and were significant for the olfactory bulb, hippocampus, and cerebellum; the latter being the most severely affected. Additionally, the septal region and the pituitary were disproportionately large. Linear measures were consistent with those of volume. Other dysmorphologic features noted in the MR scans were choanal stenosis and optic nerve coloboma. CONCLUSIONS: This study demonstrates that exposure to ethanol occurring in mice at stages corresponding to the human fourth week postfertilization results in structural brain abnormalities that are readily identifiable at fetal stages of development. In addition to illustrating the utility of MR microscopy for analysis of an FASD mouse model, this work provides new information that confirms and extends human clinical observations. It also provides a framework for comparison of structural brain abnormalities resulting from ethanol exposure at other developmental stages and dosages.


Asunto(s)
Anomalías Inducidas por Medicamentos , Encéfalo/anomalías , Encéfalo/embriología , Depresores del Sistema Nervioso Central/toxicidad , Etanol/toxicidad , Trastornos del Espectro Alcohólico Fetal/patología , Feto/efectos de los fármacos , Animales , Encéfalo/efectos de los fármacos , Cerebelo/anomalías , Cerebelo/efectos de los fármacos , Cerebelo/embriología , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Desarrollo Embrionario/efectos de los fármacos , Femenino , Feto/patología , Hipocampo/anomalías , Hipocampo/efectos de los fármacos , Hipocampo/embriología , Imagen por Resonancia Magnética , Ratones , Ratones Endogámicos C57BL , Bulbo Olfatorio/anomalías , Bulbo Olfatorio/efectos de los fármacos , Bulbo Olfatorio/embriología , Hipófisis/anomalías , Hipófisis/efectos de los fármacos , Hipófisis/embriología , Embarazo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA