Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 9542, 2024 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664550

RESUMEN

The introduction of women into U.S. military ground close combat roles requires research into sex-specific effects of military training and operational activities. Knee osteoarthritis is prevalent among military service members; its progression has been linked to occupational tasks such as load carriage. Analyzing tibiofemoral arthrokinematics during load carriage is important to understand potentially injurious motion and osteoarthritis progression. The study purpose was to identify effects of load carriage on knee arthrokinematics during walking and running in recruit-aged women. Twelve healthy recruit-aged women walked and ran while unloaded (bodyweight [BW]) and carrying additional + 25%BW and + 45%BW. Using dynamic biplane radiography and subject-specific bone models, tibiofemoral arthrokinematics, subchondral joint space and center of closest contact location between subchondral bone surfaces were analyzed over 0-30% stance (separate one-way repeated measures analysis of variance, load by locomotion). While walking, medial compartment contact location was 5% (~ 1.6 mm) more medial for BW than + 45%BW at foot strike (p = 0.03). While running, medial compartment contact location was 4% (~ 1.3 mm) more lateral during BW than + 25%BW at 30% stance (p = 0.04). Internal rotation was greater at + 45%BW compared to + 25%BW (p < 0.01) at 30% stance. Carried load affects tibiofemoral arthrokinematics in recruit-aged women. Prolonged load carriage could increase the risk of degenerative joint injury in physically active women.


Asunto(s)
Articulación de la Rodilla , Caminata , Soporte de Peso , Humanos , Femenino , Soporte de Peso/fisiología , Caminata/fisiología , Articulación de la Rodilla/fisiología , Adulto , Carrera/fisiología , Personal Militar , Fenómenos Biomecánicos , Fémur/fisiología , Fémur/diagnóstico por imagen , Osteoartritis de la Rodilla/fisiopatología , Osteoartritis de la Rodilla/etiología , Tibia/fisiología , Tibia/diagnóstico por imagen , Adulto Joven
2.
Clin Biomech (Bristol, Avon) ; 112: 106184, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38244237

RESUMEN

BACKGROUND: Reaching behind the back is painful for individuals with rotator cuff tears. The objectives of the study were to determine changes in glenohumeral kinematics when reaching behind the back, passive range of motion (RoM), patient reported outcomes and the relationships between kinematics and patient reported outcomes following exercise therapy. METHODS: Eighty-four individuals with symptomatic isolated supraspinatus tears were recruited for this prospective observational study. Glenohumeral kinematics were measured using biplane radiography during a reaching behind the back movement. Passive glenohumeral internal rotation and patient reported outcome measures were collected. Depending on data normality, appropriate tests were utilized to determine changes in variables. Spearman's correlations were utilized for associations, and Stuart-Maxwell tests for changes in distributions. FINDINGS: Maximum active glenohumeral internal rotation increased by 3.2° (P = 0.001), contact path length decreased by 5.5% glenoid size (P = 0.022), passive glenohumeral internal rotation RoM increased by 4.9° (P = 0.001), and Western Ontario Rotator Cuff Index and American Shoulder and Elbow Surgeons scores increased by 29.8 and 21.1 (P = 0.001), respectively. Changes in Western Ontario Rotator Cuff Index scores positively associated with changes in maximum active glenohumeral internal rotation and negatively associated with changes in contact path lengths (P = 0.008 and P = 0.006, respectively). INTERPRETATION: The reaching behind the back movement was useful in elucidating in-vivo mechanistic changes associated with patient reported outcomes. Glenohumeral joint function and patient reported outcomes improved, where changes in Western Ontario Rotator Cuff Index scores were associated with kinematics. These findings inform clinicians of functional changes following exercise therapy and new targetable treatment factors.


Asunto(s)
Lesiones del Manguito de los Rotadores , Articulación del Hombro , Humanos , Lesiones del Manguito de los Rotadores/terapia , Manguito de los Rotadores , Hombro , Terapia por Ejercicio , Rango del Movimiento Articular , Fenómenos Biomecánicos , Medición de Resultados Informados por el Paciente
3.
Sci Rep ; 13(1): 4910, 2023 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-36966216

RESUMEN

Optimal motor control that is stable and adaptable to perturbation is reflected in the temporal arrangement and regulation of gait variability. Load carriage and forced-marching are common military relevant perturbations to gait that have been implicated in the high incidence of musculoskeletal injuries in military populations. We investigated the interactive effects of load magnitude and locomotion pattern on motor variability, stride regulation and spatiotemporal complexity during gait in recruit-aged adults. We further investigated the influences of sex and task duration. Healthy adults executed trials of running and forced-marching with and without loads at 10% above their gait transition velocity. Spatiotemporal parameters were analyzed using a goal equivalent manifold approach. With load and forced-marching, individuals used a greater array of motor solutions to execute the task goal (maintain velocity). Stride-to-stride regulation became stricter as the task progressed. Participants exhibited optimal spatiotemporal complexity with significant but not meaningful differences between sexes. With the introduction of load carriage and forced-marching, individuals relied on a strategy that maximizes and regulates motor solutions that achieve the task goal of velocity specifically but compete with other task functions. The appended cost penalties may have deleterious effects during prolonged execution, potentially increasing the risk of musculoskeletal injuries.


Asunto(s)
Personal Militar , Carrera , Adulto , Humanos , Persona de Mediana Edad , Caminata/fisiología , Objetivos , Marcha/fisiología
4.
J Biomech ; 143: 111280, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36067648

RESUMEN

There is a lack of data unaffected by soft tissue artifact describing bilateral symmetry and sex differences in hip kinematics in asymptomatic individuals during activities of daily living. This study aimed to identify sex-based differences and to quantify bilateral symmetry in continuous hip kinematics during walking and bodyweight squatting using biplane radiography. Twenty-four asymptomatic young adults (13 women, 11 men; age: 21.9 ± 2.2 years) performed treadmill walking and squatting while synchronized biplane radiographs of the hip were collected at 50 frames/s. Pelvis and proximal femur bone tissue were segmented from CT images and reconstructed into subject-specific 3D bone models. Femoroacetabular kinematics were determined using a validated volumetric model-based tracking technique that matched digitally reconstructed radiographs generated from the CT-based bone models to the biplane radiographs. Symmetry was calculated as the average absolute side-to-side difference (SSD) in kinematic waveforms for each participant. Sex-based and phase-based (eccentric vs. concentric squatting) kinematic variations were assessed using linear mixed model analysis. Women were 0.2 mm more anteriorly translated and 0.1 mm more inferiorly translated than men across the gait cycle (both p < 0.04), but no sex-based or phase-based kinematic differences during squatting were identified. The maximum SSD across all movements was up to 18.6° (internal-external rotation) and 1.0 mm (superior-inferior translation), respectively. Asymmetry in internal rotation, superior translation, and medial translation was greater during squatting than during walking (all p < 0.002). This study provides a reference dataset of healthy young adults for evaluating hip kinematics and symmetry in symptomatic cohorts or in individuals undergoing surgery or rehabilitation.


Asunto(s)
Actividades Cotidianas , Caracteres Sexuales , Adulto , Fenómenos Biomecánicos , Femenino , Marcha , Humanos , Masculino , Radiografía , Rango del Movimiento Articular , Adulto Joven
5.
J Appl Biomech ; 37(4): 343-350, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34051696

RESUMEN

The objective was to examine the interactive effects of load magnitude and locomotion pattern on lower-extremity joint angles and intralimb coordination in recruit-aged women. Twelve women walked, ran, and forced marched at body weight and with loads of +25%, and +45% of body weight on an instrumented treadmill with infrared cameras. Joint angles were assessed in the sagittal plane. Intralimb coordination of the thigh-shank and shank-foot couple was assessed with continuous relative phase. Mean absolute relative phase (entire stride) and deviation phase (stance phase) were calculated from continuous relative phase. At heel strike, forced marching exhibited greater (P < .001) hip flexion, knee extension, and ankle plantar flexion compared with running. At mid-stance, knee flexion (P = .007) and ankle dorsiflexion (P = .04) increased with increased load magnitude for all locomotion patterns. Forced marching (P = .009) demonstrated a "stiff-legged" locomotion pattern compared with running, evidenced by the more in-phase mean absolute relative phase values. Running (P = .03) and walking (P = .003) had greater deviation phase than forced marching. Deviation phase increased for running (P = .03) and walking (P < .001) with increased load magnitude but not for forced marching. With loads of >25% of body weight, forced marching may increase risk of injury due to inhibited energy attenuation up the kinetic chain and lack of variability to disperse force across different supportive structures.


Asunto(s)
Marcha , Extremidad Inferior/fisiología , Caminata , Soporte de Peso , Anciano , Fenómenos Biomecánicos , Femenino , Humanos , Articulación de la Rodilla
6.
Gait Posture ; 88: 22-27, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33957553

RESUMEN

BACKGROUND: Military personnel in combat roles often perform gait tasks with additional load, which can affect the contributions of joint mechanical work (positive and negative). Furthermore, different locomotion patterns can also affect joint specific work contributions. While mean behavior of joint work is important to understanding gait, changes in joint kinetic modulation, or the regulation/control of stride-to-stride joint work variability is necessary to elucidate locomotor system function. Suboptimal modulation exhibited as a stochastic time-series (large fluctuation followed by an opposite smaller fluctuation) could potentially affect locomotion efficiency and portend injury risk. It remains unclear how the locomotor system responds to a combination of load perturbations and varying locomotion patterns. RESEARCH QUESTION: What are the interactive effects of load magnitude and locomotion pattern on joint positive/negative work and joint work modulation in healthy, active, recruit-aged women? METHODS: Eleven healthy, active, recruit-aged (18-33 years) women ran and forced-marched (walking at a velocity an individual would typically jog) in bodyweight (BW), an additional 25 % of BW (+25 %BW) and an additional 45 % of BW (+45 %BW) conditions at a velocity above their gait transition velocity. Joint work was calculated as the time integral of joint power. Joint work modulation was assessed with detrended fluctuation analysis (DFA) on consecutive joint work time-series. RESULTS: Joint work contributions shifted proximally for forced-marching demonstrated by lesser (p < .001) positive/negative ankle work but greater (p = .001) positive hip work contributions compared to running. Running exhibited optimal positive ankle work modulation compared to forced-marching (p = .040). Knee and ankle negative joint work modulation was adversely impacted compared to the hip during forced-marching (p < .001). SIGNIFICANCE: Employing forced-marching gait while under loads of 25 and 45 % of BW reduces the ability of the plantar-flexors and knee extensors to optimally contribute to energy absorption and propulsion in recruit-aged women, potentially reducing metabolic efficiency and increasing injury risk.


Asunto(s)
Marcha , Caminata , Articulación del Tobillo , Fenómenos Biomecánicos , Femenino , Articulación de la Cadera , Humanos , Articulación de la Rodilla
7.
Front Bioeng Biotechnol ; 8: 582219, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33042981

RESUMEN

INTRODUCTION: During cyclical steady state ambulation, such as walking, variability in stride intervals can indicate the state of the system. In order to define locomotor system function, observed variability in motor patterns, stride regulation and gait complexity must be assessed in the presence of a perturbation. Common perturbations, especially for military populations, are load carriage and an imposed locomotion pattern known as forced marching (FM). We examined the interactive effects of load magnitude and locomotion pattern on motor variability, stride regulation and gait complexity during bipedal ambulation in recruit-aged females. METHODS: Eleven healthy physically active females (18-30 years) completed 1-min trials of running and FM at three load conditions: no additional weight/bodyweight (BW), an additional 25% of BW (BW + 25%), and an additional 45% of BW (BW + 45%). A goal equivalent manifold (GEM) approach was used to assess motor variability yielding relative variability (RV; ratio of "good" to "bad" variability) and detrended fluctuation analysis (DFA) to determine gait complexity on stride length (SL) and stride time (ST) parameters. DFA was also used on GEM outcomes to calculate stride regulation. RESULTS: There was a main effect of load (p = 0.01) on RV; as load increased, RV decreased. There was a main effect of locomotion (p = 0.01), with FM exhibiting greater RV than running. Strides were regulated more tightly and corrected quicker at BW + 45% compared (p < 0.05) to BW. Stride regulation was greater for FM compared to running. There was a main effect of load for gait complexity (p = 0.002); as load increased gait complexity decreased, likewise FM had less (p = 0.02) gait complexity than running. DISCUSSION: This study is the first to employ a GEM approach and a complexity analysis to gait tasks under load carriage. Reduction in "good" variability as load increases potentially exposes anatomical structures to repetitive site-specific loading. Furthermore, load carriage magnitudes of BW + 45% potentially destabilize the system making individuals less adaptable to additional perturbations. This is further evidenced by the decrease in gait complexity, which all participants demonstrated values similarly observed in neurologically impaired populations during the BW + 45% load condition.

8.
J Biomech ; 105: 109772, 2020 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-32279931

RESUMEN

Knee osteoarthritis (OA) is prevalent among female soldiers, resulting in limited duty and long term adverse ambulatory effects. A proposed mechanism to the development of knee OA is the assiduous execution of load carriage tasks. Soldiers are often required to maintain a walking gait with load at velocities beyond their gait transition velocity (GTV) known as forced marching. The primary aim of this investigation is to determine the interactive effects of load magnitude and locomotion pattern on relative knee total joint moment (KTJM) in healthy recruit-aged women. The secondary aims are to determine knee total joint moment limb differences and to determine the interactive effect of load magnitude and locomotion pattern on the percent contributions of each plane of motion moment. Individuals were tasked with running and forced marching at 10% above their GTV at body weight (BW) and with an additional 25% and 45% of their BW. KTJM was analyzed at two specific gait events of heel-strike and mid-stance. At heel-strike, forced marching exhibited greater KTJM compared to run for all load conditions but running had greater KTJM than forced marching at mid-stance. The forced marching pattern exhibited larger KTJM for the dominant limb at both gait events compared to running. Lastly, at mid-stance the knee adduction moment percent (KAM%) contribution was greater for forced marching compared to running. The forced marching pattern demonstrates joint kinetics that may be more deleterious with prolonged exposure. Likewise, forced marching induced KAM% similar to those already suffering from knee OA.


Asunto(s)
Articulación de la Rodilla , Osteoartritis de la Rodilla , Anciano , Fenómenos Biomecánicos , Femenino , Marcha , Humanos , Caminata , Soporte de Peso
9.
Ultrasound Med Biol ; 43(10): 2372-2394, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28728780

RESUMEN

Transabdominal ultrasound elasticity imaging could improve the assessment of rupture risk for abdominal aortic aneurysms by providing information on the mechanical properties and stress or strain states of vessel walls. We implemented a non-rigid image registration method to visualize the pressure-normalized strain within vascular tissues and adapted it to measure total strain over an entire cardiac cycle. We validated the algorithm's performance with both simulated ultrasound images with known principal strains and anatomically accurate heterogeneous polyvinyl alcohol cryogel vessel phantoms. Patient images of abdominal aortic aneurysm were also used to illustrate the clinical feasibility of our imaging algorithm and the potential value of pressure-normalized strain as a clinical metric. Our results indicated that pressure-normalized strain could be used to identify spatial variations in vessel tissue stiffness. The results of this investigation were sufficiently encouraging to warrant a clinical study measuring abdominal aortic pressure-normalized strain in a patient population with aneurysmal disease.


Asunto(s)
Aneurisma de la Aorta Abdominal/diagnóstico por imagen , Aneurisma de la Aorta Abdominal/fisiopatología , Diagnóstico por Imagen de Elasticidad/métodos , Fantasmas de Imagen , Rigidez Vascular/fisiología , Algoritmos , Aorta Abdominal/diagnóstico por imagen , Estudios de Factibilidad , Medición de Riesgo , Factores de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA