Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Physiol Behav ; 257: 113992, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36223841

RESUMEN

Artificial light at night (ALAN) disrupts biological rhythms across widely diverse organisms. To determine how energy is allocated by animals in different light environments, we investigated the impacts of ALAN on behavior and physiology of diurnal green anole lizards (Anolis carolinensis). Two groups of 24 adult lizards (half males, half females) were maintained in a controlled lab setting for six weeks. One group was exposed to a simulated natural summer light-dark cycle; the other was exposed to ALAN that simulated urban, nocturnal light exposure. After an acclimation period, we conducted four behavioral trials. One trial examined behavioral time allocation over two 24 h periods, and three others were conducted during mid-day and mid-night: open field tests, to examine exploratory behavior; foraging trials, to examine prey consumption; and social interaction trials, to examine same-sex interactions. We then measured each lizard's snout-vent length and mass of its body, abdominal fat pads, liver, and, for males, testes. Lizards exposed to ALAN were more likely to be awake at night, using nocturnal light to explore, forage, and display to conspecifics. However, during the day, ALAN lizards were less likely to be awake, slower to move, and females displayed less frequently. ALAN lizards had heavier fat pads and testes, but ALAN did not impact body mass, liver mass, or snout-vent length. In sum, ALAN appears to cause a broad shift towards increased nocturnal activity and may alter metabolic and reproductive processes. Future work should examine the fitness consequences of these behavioral and physiological changes.


Asunto(s)
Lagartos , Animales , Femenino , Masculino , Luz , Contaminación Lumínica , Lagartos/fisiología , Fotoperiodo
2.
J Exp Biol ; 225(Suppl_1)2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35258608

RESUMEN

Comparative analyses have a long history of macro-ecological and -evolutionary approaches to understand structure, function, mechanism and constraint. As the pace of science accelerates, there is ever-increasing access to diverse types of data and open access databases that are enabling and inspiring new research. Whether conducting a species-level trait-based analysis or a formal meta-analysis of study effect sizes, comparative approaches share a common reliance on reliable, carefully curated databases. Unlike many scientific endeavors, building a database is a process that many researchers undertake infrequently and in which we are not formally trained. This Commentary provides an introduction to building databases for comparative analyses and highlights challenges and solutions that the authors of this Commentary have faced in their own experiences. We focus on four major tips: (1) carefully strategizing the literature search; (2) structuring databases for multiple use; (3) establishing version control within (and beyond) your study; and (4) the importance of making databases accessible. We highlight how one's approach to these tasks often depends on the goal of the study and the nature of the data. Finally, we assert that the curation of single-question databases has several disadvantages: it limits the possibility of using databases for multiple purposes and decreases efficiency due to independent researchers repeatedly sifting through large volumes of raw information. We argue that curating databases that are broader than one research question can provide a large return on investment, and that research fields could increase efficiency if community curation of databases was established.

3.
Integr Comp Biol ; 61(6): 2119-2131, 2022 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-34259842

RESUMEN

Differences within a biological system are ubiquitous, creating variation in nature. Variation underlies all evolutionary processes and allows persistence and resilience in changing environments; thus, uncovering the drivers of variation is critical. The growing recognition that variation is central to biology presents a timely opportunity for determining unifying principles that drive variation across biological levels of organization. Currently, most studies that consider variation are focused at a single biological level and not integrated into a broader perspective. Here we explain what variation is and how it can be measured. We then discuss the importance of variation in natural systems, and briefly describe the biological research that has focused on variation. We outline some of the barriers and solutions to studying variation and its drivers in biological systems. Finally, we detail the challenges and opportunities that may arise when studying the drivers of variation due to the multi-level nature of biological systems. Examining the drivers of variation will lead to a reintegration of biology. It will further forge interdisciplinary collaborations and open opportunities for training diverse quantitative biologists. We anticipate that these insights will inspire new questions and new analytic tools to study the fundamental questions of what drives variation in biological systems and how variation has shaped life.


Asunto(s)
Evolución Biológica , Animales
4.
Trends Ecol Evol ; 36(9): 860-873, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34218955

RESUMEN

Physical principles and laws determine the set of possible organismal phenotypes. Constraints arising from development, the environment, and evolutionary history then yield workable, integrated phenotypes. We propose a theoretical and practical framework that considers the role of changing environments. This 'ecomechanical approach' integrates functional organismal traits with the ecological variables. This approach informs our ability to predict species shifts in survival and distribution and provides critical insights into phenotypic diversity. We outline how to use the ecomechanical paradigm using drag-induced bending in trees as an example. Our approach can be incorporated into existing research and help build interdisciplinary bridges. Finally, we identify key factors needed for mass data collection, analysis, and the dissemination of models relevant to this framework.


Asunto(s)
Evolución Biológica , Ecosistema , Fenotipo , Árboles
5.
Integr Comp Biol ; 61(2): 634-642, 2021 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-34077526

RESUMEN

Mating behavior in animals can be understood as a sequence of events that begins with individuals encountering one another and ends with the production of offspring. Behavioral descriptions of animal interactions characterize early elements of this sequence, and genetic descriptions use offspring parentage to characterize the final outcome, with behavioral and physiological assessments of mates and mechanisms of copulation and fertilization comprising intermediate steps. However, behavioral and genetic descriptions of mating systems are often inconsistent with one another, complicating expectations for crucial aspects of mating biology, such as the presence of multiple mating. Here, we use behavioral and genetic data from a wild population of the lizard Anolis cristatellus to characterize female multiple mating and the potential for sexual selection through female mate choice in this species. We find that 48% of sampled females bore offspring sired by multiple males. Moreover, spatiotemporal proximity between males and females was associated with whether a male sired a female's offspring, and if yes, how many offspring he sired. Additionally, male body size, but not display behavior, was associated with reproductive outcomes for male-female pairs. While much remains to be learned about the mechanisms of mating and targets of sexual selection in A. cristatellus, it is clear that female multiple mating is a substantial component of this species' mating system in nature.


Asunto(s)
Lagartos , Conducta Sexual Animal , Animales , Copulación , Femenino , Lagartos/genética , Masculino , Reproducción , Análisis Espacio-Temporal
6.
Evolution ; 75(5): 1003-1010, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33755201

RESUMEN

Endocrine systems act as key intermediaries between organisms and their environments. This interaction leads to high variability in hormone levels, but we know little about the ecological factors that influence this variation within and across major vertebrate groups. We study this topic by assessing how various social and environmental dynamics influence testosterone levels across the entire vertebrate tree of life. Our analyses show that breeding season length and mating system are the strongest predictors of average testosterone concentrations, whereas breeding season length, environmental temperature, and variability in precipitation are the strongest predictors of within-population variation in testosterone. Principles from small-scale comparative studies that stress the importance of mating opportunity and competition on the evolution of species differences in testosterone levels, therefore, likely apply to the entire vertebrate lineage. Meanwhile, climatic factors associated with rainfall and ambient temperature appear to influence variability in plasma testosterone, within a given species. These results, therefore, reveal how unique suites of ecological factors differentially explain scales of variation in circulating testosterone across mammals, birds, reptiles, amphibians, and fishes.


Asunto(s)
Rasgos de la Historia de Vida , Testosterona/sangre , Vertebrados/fisiología , Animales , Ecosistema , Lluvia , Conducta Sexual Animal , Temperatura
7.
Mol Cell Biochem ; 468(1-2): 169-183, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32222880

RESUMEN

Population data have consistently demonstrated a correlation between circulating branched-chain amino acids (BCAA) and insulin resistance. Most recently valine catabolite, 3-hydroxyisobutyrate, has emerged as a potential cause of BCAA-mediated insulin resistance; however, it is unclear if valine independently promotes insulin resistance. It is also unclear if excess valine influences the ability of cells to degrade BCAA. Therefore, this study investigated the effect of valine on muscle insulin signaling and related metabolism in vitro. C2C12 myotubes were treated with varying concentrations (0.5 mM-2 mM) of valine for up to 48 h. qRT-PCR and western blot were used to measure metabolic gene and protein expression, respectively. Insulin sensitivity (indicated by pAkt:Akt), metabolic gene and protein expression, and cell metabolism were also measured following valine treatment both with and without varying levels of insulin resistance. Mitochondrial and glycolytic metabolism were measured via oxygen consumption and extracellular acidification rate, respectively. Valine did not alter regulators of mitochondrial biogenesis or glycolysis; however, valine reduced branched-chain alpha-keto acid dehydrogenase a (Bckdha) mRNA (but not protein) expression which was exacerbated by insulin resistance. Valine treatment had no effect on pAkt:Akt following either acute or 48-h treatment, regardless of insulin stimulation or varying levels of insulin resistance. In conclusion, despite consistent population data demonstrating a relationship between circulating BCAA (and related metabolites) and insulin resistance, valine does not appear to independently alter insulin sensitivity or worsen insulin resistance in the myotube model of skeletal muscle.


Asunto(s)
Aminoácidos de Cadena Ramificada/efectos de los fármacos , Resistencia a la Insulina , Insulina/metabolismo , Fibras Musculares Esqueléticas/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Valina/farmacología , 3-Metil-2-Oxobutanoato Deshidrogenasa (Lipoamida)/genética , 3-Metil-2-Oxobutanoato Deshidrogenasa (Lipoamida)/metabolismo , Aminoácidos de Cadena Ramificada/metabolismo , Animales , Línea Celular , Supervivencia Celular/efectos de los fármacos , Glucólisis/efectos de los fármacos , Insulina/farmacología , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/genética , Mitocondrias/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/enzimología , Músculo Esquelético/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética
8.
Conserv Physiol ; 8(1): coz110, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31993201

RESUMEN

Rates of human-induced environmental change continue increasing with human population size, potentially altering animal physiology and negatively affecting wildlife. Researchers often use glucocorticoid concentrations (hormones that can be associated with stressors) to gauge the impact of anthropogenic factors (e.g. urbanization, noise and light pollution). Yet, no general relationships between human-induced environmental change and glucocorticoids have emerged. Given the number of recent studies reporting baseline and stress-induced corticosterone (the primary glucocorticoid in birds and reptiles) concentrations worldwide, it is now possible to conduct large-scale comparative analyses to test for general associations between disturbance and baseline and stress-induced corticosterone across species. Additionally, we can control for factors that may influence context, such as life history stage, environmental conditions and urban adaptability of a species. Here, we take a phylogenetically informed approach and use data from HormoneBase to test if baseline and stress-induced corticosterone are valid indicators of exposure to human footprint index, human population density, anthropogenic noise and artificial light at night in birds and reptiles. Our results show a negative relationship between anthropogenic noise and baseline corticosterone for birds characterized as urban avoiders. While our results potentially indicate that urban avoiders are more sensitive to noise than other species, overall our study suggests that the relationship between human-induced environmental change and corticosterone varies across species and contexts; we found no general relationship between human impacts and baseline and stress-induced corticosterone in birds, nor baseline corticosterone in reptiles. Therefore, it should not be assumed that high or low levels of exposure to human-induced environmental change are associated with high or low corticosterone levels, respectively, or that closely related species, or even individuals, will respond similarly. Moving forward, measuring alternative physiological traits alongside reproductive success, health and survival may provide context to better understand the potential negative effects of human-induced environmental change.

9.
Biochimie ; 168: 124-133, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31682874

RESUMEN

Elevated circulating branched-chain amino acids (BCAA) such as leucine have been consistently correlated with increasing severity of insulin resistance across numerous populations. BCAA may promote insulin resistance through either mTOR-mediated suppression of insulin receptor substrate-1 or through the accumulation of toxic BCAA catabolites. Although the link between circulating BCAA and insulin resistance has been consistent, it has yet to be concluded if BCAA causally contribute to the development or worsening of insulin resistance. This work investigated the effect of leucine both with and without varying levels of insulin resistance on metabolism, metabolic gene expression, and insulin signaling. C2C12 myotubes were treated with and without varied concentrations of leucine up to 2 mM for 24 h both with and without varied levels of insulin resistance. Gene and protein expression were measured via qRT-PCR and Western blot, respectively. Mitochondrial metabolism was measured via O2 consumption. Leucine at 2 mM increased oxidative metabolism as well as gene expression of mitochondrial biogenesis, which was associated with increased cellular lipid content. Despite increased lipid content of leucine-treated cells, neither acute nor chronic leucine treatment at 2 mM affected insulin signaling in insulin sensitive, mildly insulin resistant, or severely insulin resistant cells. Similarly, leucine at lower concentrations (0.25 mM, 0.5 mM, and 1 mM) did not alter insulin signaling either, regardless of insulin resistance. Leucine appears to improve myotube oxidative metabolism and related metabolic gene expression. And despite increased lipid content of leucine-treated cells, leucine does not appear to alter insulin sensitivity either acutely or chronically, regardless of level of insulin resistance.


Asunto(s)
Insulina/metabolismo , Leucina/farmacología , Mitocondrias/metabolismo , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/metabolismo , Animales , Línea Celular , Resistencia a la Insulina , Metabolismo de los Lípidos/efectos de los fármacos , Fibras Musculares Esqueléticas/citología , Biogénesis de Organelos
10.
Am Nat ; 193(6): 866-880, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31094598

RESUMEN

Glucocorticoid (GC) hormones are important phenotypic mediators across vertebrates, but their circulating concentrations can vary markedly. Here we investigate macroevolutionary patterning in GC levels across tetrapods by testing seven specific hypotheses about GC variation and evaluating whether the supported hypotheses reveal consistent patterns in GC evolution. If selection generally favors the "supportive" role of GCs in responding effectively to challenges, then baseline and/or stress-induced GCs may be higher in challenging contexts. Alternatively, if selection generally favors "protection" from GC-induced costs, GCs may be lower in environments where challenges are more common or severe. The predictors of baseline GCs were all consistent with supportive effects: levels were higher in smaller organisms and in those inhabiting more energetically demanding environments. During breeding, baseline GCs were also higher in populations and species with fewer lifetime opportunities to reproduce. The predictors of stress-induced GCs were instead more consistent with the protection hypothesis: during breeding, levels were lower in organisms with fewer lifetime reproductive opportunities. Overall, these patterns indicate a surprising degree of consistency in how some selective pressures shape GCs across broad taxonomic scales; at the same time, in challenging environments selection appears to operate on baseline and stress-induced GCs in distinct ways.


Asunto(s)
Evolución Biológica , Glucocorticoides/sangre , Selección Genética , Estrés Fisiológico , Vertebrados/genética , Animales , Femenino , Masculino , Modelos Estadísticos , Vertebrados/sangre
11.
Nutr Res ; 66: 22-31, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31051319

RESUMEN

Branched-chain amino acids (BCAAs) are essential in the diet and may provide benefit for those who partake in regular physical activity and resistance training, yet circulating BCAAs have been repeatedly shown to correlate with severity of insulin resistance in obese/diseased populations. Recently, the valine catabolite 3-hydroxyisobuterate (3HIB) was shown to promote insulin resistance in skeletal muscle by increasing lipid content in vivo. The purpose of this study was to investigate the mechanistic effects of 3HIB on skeletal muscle insulin signaling, metabolism, and related gene expression in vitro. Given these previous observations, we hypothesized that 3HIB would depress skeletal muscle metabolism and insulin sensitivity. C2C12 myotubes were treated with 3HIB for up to 48 hours using both physiological (25-100 µmol/L) and supraphysiological (5 mmol/L) concentrations. Metabolic gene expression was measured via quantitative real-time polymerase chain reaction, mitochondrial metabolism was measured via O2 consumption, and glycolytic metabolism was quantified using extracellular acidification rate. Western blot was used to assess insulin sensitivity following insulin stimulation (indicated by phospho-AKT expression). 3HIB did not alter expressional indicators of mitochondrial biogenesis, glycolysis, BCAA catabolism, or lipogenesis. Chronic physiological 3HIB treatment significantly increased peak oxygen consumption, whereas supraphysiological 3HIB treatment suppressed basal and peak mitochondrial and glycolytic metabolism. Both physiological and supraphysiological 3HIB reduced pAkt expression during insulin stimulation. These findings suggest that 3HIB may reduce muscle insulin sensitivity in cultured myotubes, supporting a potentially causal role of 3HIB in the development of insulin resistance in highly metabolic cell types.


Asunto(s)
Hidroxibutiratos/administración & dosificación , Insulina/metabolismo , Mitocondrias Musculares/efectos de los fármacos , Mitocondrias Musculares/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Aminoácidos de Cadena Ramificada/metabolismo , Animales , Línea Celular , Relación Dosis-Respuesta a Droga , Expresión Génica/efectos de los fármacos , Glucólisis/efectos de los fármacos , Resistencia a la Insulina , Metabolismo de los Lípidos/efectos de los fármacos , Ratones , Fibras Musculares Esqueléticas/ultraestructura , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/ultraestructura , Mioblastos , Consumo de Oxígeno/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
12.
J Evol Biol ; 32(4): 302-309, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30659673

RESUMEN

Post-copulatory sexual selection is thought to be responsible for much of the extraordinary diversity in sperm morphology across metazoans. However, the extent to which post-copulatory selection targets sperm morphology versus sperm production is generally unknown. To address this issue, we simultaneously characterized the evolution of sperm morphology (length of the sperm head, midpiece and flagellum) and testis size (a proxy for sperm production) across 26 species of Anolis lizards, a group in which sperm competition is likely. We found that the length of the sperm midpiece has evolved 2-3 times faster than that of the sperm head or flagellum, suggesting that midpiece size may be the most important aspect of sperm morphology with respect to post-copulatory sexual selection. However, testis size has evolved faster than any aspect of sperm morphology or body size, supporting the hypothesis that post-copulatory sexual selection acts more strongly upon sperm production than upon sperm morphology. Likewise, evolutionary increases in testis size, which typically indicate increased sperm competition, are not associated with predictable changes in sperm morphology, suggesting that any effects of post-copulatory selection on sperm morphology are either weak or variable in direction across anoles. Collectively, our results suggest that sperm production is the primary target of post-copulatory sexual selection in this lineage.


Asunto(s)
Evolución Biológica , Lagartos/anatomía & histología , Lagartos/fisiología , Preferencia en el Apareamiento Animal/fisiología , Espermatozoides/citología , Testículo/anatomía & histología , Animales , Masculino , Tamaño de los Órganos/fisiología , Recuento de Espermatozoides
13.
Integr Comp Biol ; 58(4): 712-719, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30295812

RESUMEN

Hormones are central mediators of genotype-phenotype and organism-environment interactions. Despite these important functions, the role of selection in shaping hormonal mediators of phenotype remains poorly understood. Thanks to decades of work by endocrinologists, circulating hormone levels have been measured in a diversity of organisms. Variation in other endocrine traits and mediators (e.g., receptor expression and binding globulins), and the hormonal response to standardized challenges (e.g., restraint, pharmacological challenges) are also increasingly measured in both captive and free-living populations. Large-scale comparative analyses of the multitude of available endocrine data represent a particularly promising approach to addressing the function and evolution of these key phenotypic mediators, and their potential to serve as indicators of disturbance. Several recent phylogenetic comparative analyses and meta-analyses have begun to reveal the power and potential of these approaches to address key questions in integrative biology. Here we highlight two recent developments that are facilitating such analyses: increasingly powerful and flexible phylogenetic comparative methods, and the release of two endocrine trait databases-HormoneBase (currently 474 species) and the Wildlife Endocrinology Information Network (currently 25 species)-that contain compiled measures of endocrine traits across vertebrates. Increasingly comprehensive comparative analyses of endocrine data could provide insight into many interesting questions, including how rapidly changing environments are impacting phenotypes, why endocrine traits differ so remarkably within and across populations, and the evolution of plasticity. The endocrine system mediates interactions between genotypes and phenotypes, and between organisms and their environment. Environmentally induced hormonal responses regulate phenotypic flexibility across timescales by altering physiological state, gene expression, and epigenetic marks. A staggering diversity of phenotypic traits are mediated by hormones from early development through senescence. Through their actions on behavior, hormones also exert widespread influence over how organisms interact with their biotic and abiotic environments. Because hormones are responsive to the environment, there has long been interest in their use as biomarkers of exposure to challenges. More recently, increasing attention has been paid to the potential for within and among-population variation in endocrine regulation or responsiveness to serve as indicators of resistance or resilience to future challenges, or measures of evolutionary potential.


Asunto(s)
Sistema Endocrino/fisiología , Hormonas/fisiología , Fenotipo , Vertebrados/fisiología , Animales , Evolución Biológica , Bases de Datos como Asunto , Filogenia , Vertebrados/crecimiento & desarrollo
14.
Integr Comp Biol ; 58(4): 763-776, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30011006

RESUMEN

At macroevolutionary scales, stress physiology may have consequences for species diversification and subspecies richness. Populations that exploit new resources or undergo range expansion should cope with new environmental challenges, which could favor higher mean stress responses. Within-species variation in the stress response may also play a role in mediating the speciation process: in species with broad variation, there will always be some individuals that can tolerate an unpredictable environment, whereas in species with narrow variation there will be fewer individuals that are able to thrive in a new ecological niche. We tested for the evolutionary relationship between stress response, speciation rate, and subspecies richness in birds by relying on the HormoneBase repository, from which we calculated within- and among-species variation in baseline (BL) and stress-induced (SI) corticosterone levels. To estimate speciation rates, we applied Bayesian analysis of macroevolutionary mixtures that can account for variation in diversification rate among clades and through time. Contrary to our predictions, lineages with higher diversification rates were not characterized by higher BL or SI levels of corticosterone either at the tips or at the deeper nodes of the phylogeny. We also found no association between mean hormone levels and subspecies richness. Within-species variance in corticosterone levels showed close to zero repeatability, thus it is highly unlikely that this is a species-specific trait that influences diversification rates. These results imply that stress physiology may play a minor, if any, role in determining speciation rates in birds.


Asunto(s)
Aves/fisiología , Especiación Genética , Glucocorticoides/metabolismo , Animales , Bases de Datos como Asunto , Ecosistema , Especificidad de la Especie
15.
Integr Comp Biol ; 58(4): 800-813, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30052988

RESUMEN

Circulating glucocorticoids (GCs) are the most commonly used biomarkers of stress in wildlife. However, their utility as a tool for identifying and/or managing at-risk species has varied. Here, we took a very broad approach to conservation physiology, asking whether International Union for the Conservation of Nature (IUCN) listing status (concern versus no obvious concern) and/or location within a geographic range (edge versus non-edge) predicted baseline and post-restraint concentrations of corticosterone (CORT) among many species of birds and reptiles. Even though such an approach can be viewed as coarse, we asked in this analysis whether CORT concentrations might be useful to implicate species at risk. Indeed, our effort, relying on HormoneBase, a repository of data on wildlife steroids, complements several other large-scale efforts in this issue to describe and understand GC variation. Using a phylogenetically informed Bayesian approach, we found little evidence that either IUCN status or edge/non-edge location in a geographic distribution were related to GC levels. However, we did confirm patterns described in previous studies, namely that breeding condition and evolutionary relatedness among species predicted some GC variation. Given the broad scope of our work, we are reluctant to conclude that IUCN status and location within a range are unrelated to GC regulation. We encourage future more targeted efforts on GCs in at-risk populations to reveal how factors leading to IUCN listing or the environmental conditions at range edges impact individual performance and fitness, particularly in the mammals, amphibians, and fish species we could not study here because data are currently unavailable.


Asunto(s)
Aves/fisiología , Conservación de los Recursos Naturales , Glucocorticoides/metabolismo , Reptiles/fisiología , Distribución Animal , Animales , Bases de Datos como Asunto
16.
Integr Comp Biol ; 58(4): 729-738, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-29939251

RESUMEN

Glucocorticoids (GCs) are stress hormones that can strongly influence physiology, behavior, and an organism's ability to cope with environmental change. Despite their importance, and the wealth of studies that have sought to understand how and why GC concentrations vary within species, we do not have a clear understanding of how circulating GC levels vary within and across the major vertebrate clades. New research has proposed that much interspecific variation in GC concentrations can be explained by variation in metabolism and body mass. Specifically, GC concentrations should vary proportionally with mass-specific metabolic rates and, given known scaling relationships between body mass and metabolic rate, GC concentrations should scale to the -1/4 power of body mass and to the power of 1 with mass-specific metabolic rate. Here, we use HormoneBase, the newly compiled database that includes plasma GC concentrations from free-living and unmanipulated vertebrates, to evaluate this hypothesis. Specifically, we explored the relationships between body mass or mass-specific metabolic rate and either baseline or stress-induced GC (cortisol or corticosterone) concentrations in tetrapods. Our phylogenetically-informed models suggest that, whereas the relationship between GC concentrations and body mass across tetrapods and among mammals is close to -1/4 power, this relationship does not exist in amphibians, reptiles, and birds. Moreover, with the exception of a positive association between stress-induced GC concentrations and mass-specific metabolic rate in birds, we found little evidence that GC concentrations are linked to metabolic rate, although the number of species sampled was quite limited for amphibians and somewhat so for reptiles and mammals. Nevertheless, these results stand in contrast to the generally accepted association between the two and suggest that our observed positive association between body mass and GC concentrations may not be due to the well-established link between mass and metabolism. Large-scale comparative approaches can come with drawbacks, such as pooling and pairing observations from separate sources. However, these broad analyses provide an important counterbalance to the majority of studies examining variation in GC concentrations at the population or species level, and can be a powerful approach to testing both long-standing and new questions in biology.


Asunto(s)
Corticosterona/metabolismo , Glucocorticoides/metabolismo , Hidrocortisona/metabolismo , Filogenia , Vertebrados/metabolismo , Animales , Bases de Datos como Asunto , Vertebrados/clasificación
17.
Integr Comp Biol ; 58(4): 739-750, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-29860499

RESUMEN

Animals go through different life history stages such as reproduction, moult, or migration, of which some are more energy-demanding than others. Baseline concentrations of glucocorticoid hormones increase during moderate, predictable challenges and thus are expected to be higher when seasonal energy demands increase, such as during reproduction. By contrast, stress-induced glucocorticoids prioritize a survival mode that includes reproductive inhibition. Thus, many species down-regulate stress-induced glucocorticoid concentrations during the breeding season. Interspecific variation in glucocorticoid levels during reproduction has been successfully mapped onto reproductive investment, with species investing strongly in current reproduction (fast pace of life) showing higher baseline and lower stress-induced glucocorticoid concentrations than species that prioritize future reproduction over current attempts (slow pace of life). Here we test the "glucocorticoid seasonal plasticity hypothesis", in which we propose that interspecific variation in seasonal changes in glucocorticoid concentrations from the non-breeding to the breeding season will be related to the degree of reproductive investment (and thus pace of life). We extracted population means for baseline (for 54 species) and stress-induced glucocorticoids (for 32 species) for the breeding and the non-breeding seasons from the database "HormoneBase", also calculating seasonal glucocorticoid changes. We focused on birds because this group offered the largest sample size. Using phylogenetic comparative methods, we first showed that species differed consistently in both average glucocorticoid concentrations and their changes between the two seasons, while controlling for sex, latitude, and hemisphere. Second, as predicted seasonal changes in baseline glucocorticoids were explained by clutch size (our proxy for reproductive investment), with species laying larger clutches showing a greater increase during the breeding season-especially in passerine species. In contrast, changes in seasonal stress-induced levels were not explained by clutch size, but sample sizes were more limited. Our findings highlight that seasonal changes in baseline glucocorticoids are associated with a species' reproductive investment, representing an overlooked physiological trait that may underlie the pace of life.


Asunto(s)
Aves/fisiología , Glucocorticoides/metabolismo , Filogenia , Reproducción , Animales , Bases de Datos como Asunto , Estaciones del Año
18.
Integr Comp Biol ; 58(4): 720-728, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-29873731

RESUMEN

To address large-scale questions in evolutionary biology, the compilation of data from a variety of sources is often required. This is a major challenge in the development of databases in organismal biology. Here, we describe the procedure we used to reconstruct the phylogeny of the 474 species represented in HormoneBase, including fish, amphibians, mammals, birds, and reptiles. We also provide the methodology used to compile vertebrate environmental, life history, and metabolic rate data for use in conjunction with the HormoneBase database to test hypotheses of the evolution of steroid hormone traits. We then report a series of analyses using these data to determine the extent to which field measures of circulating hormones and associated life history data exhibit taxonomic and geographic bias. By providing a detailed description of the approaches used to compile and evaluate these data and identifying potential biases in the collection of these data, we hope to make the HormoneBase database a more broadly useful resource for the scientific community to address a diversity of comparative questions.


Asunto(s)
Clasificación/métodos , Bases de Datos como Asunto , Hormonas/fisiología , Filogenia , Proyectos de Investigación , Vertebrados/clasificación , Animales , Vertebrados/crecimiento & desarrollo , Vertebrados/fisiología
19.
Integr Comp Biol ; 58(4): 751-762, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-29897574

RESUMEN

Circulating steroid hormone levels exhibit high variation both within and between individuals, leading some to hypothesize that these phenotypes are more variable than other morphological, physiological, and behavioral traits. This should have profound implications for the evolution of steroid signaling systems, but few studies have examined how endocrine variation compares to that of other traits or differs among populations. Here we provide such an analysis by first exploring how variation in three measures of corticosterone (CORT)-baseline, stress-induced, and post-dexamethasone injection-compares to variation in key traits characterizing morphology (wing length, mass), physiology (reactive oxygen metabolite concentration [d-ROMs] and antioxidant capacity), and behavior (provisioning rate) in two populations of tree swallow (Tachycineta bicolor). After controlling for measurement precision and within-individual variation, we found that only post-dex CORT was more variable than all other traits. Both baseline and stress-induced CORT exhibit higher variation than antioxidant capacity and provisioning rate, but not oxidative metabolite levels or wing length. Variation in post-dex CORT and d-ROMs was also elevated in the higher-latitude population in that inhabits a less predictable environment. We next studied how these patterns might play out on a macroevolutionary scale, assessing patterns of variation in baseline testosterone (T) and multiple non-endocrine traits (body length, mass, social display rate, and locomotion rate) across 17 species of Anolis lizards. At the macroevolutionary level, we found that circulating T levels and the rate of social display output are higher than other behavioral and morphological traits. Altogether, our results support the idea that within-population variability in steroid levels is substantial, but not exceptionally higher than many other traits that define animal phenotypes. As such, circulating steroid levels in free-living animals should be considered traits that exhibit similar levels of variability from individual to individual in a population.


Asunto(s)
Corticosterona/metabolismo , Dexametasona/farmacología , Sistema Endocrino/fisiología , Glucocorticoides/farmacología , Fenotipo , Golondrinas/fisiología , Testosterona/metabolismo , Animales , Dexametasona/administración & dosificación , Femenino , Glucocorticoides/administración & dosificación , Masculino , Estrés Fisiológico
20.
Sci Data ; 5: 180097, 2018 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-29786693

RESUMEN

Hormones are central regulators of organismal function and flexibility that mediate a diversity of phenotypic traits from early development through senescence. Yet despite these important roles, basic questions about how and why hormone systems vary within and across species remain unanswered. Here we describe HormoneBase, a database of circulating steroid hormone levels and their variation across vertebrates. This database aims to provide all available data on the mean, variation, and range of plasma glucocorticoids (both baseline and stress-induced) and androgens in free-living and un-manipulated adult vertebrates. HormoneBase (www.HormoneBase.org) currently includes >6,580 entries from 476 species, reported in 648 publications from 1967 to 2015, and unpublished datasets. Entries are associated with data on the species and population, sex, year and month of study, geographic coordinates, life history stage, method and latency of hormone sampling, and analysis technique. This novel resource could be used for analyses of the function and evolution of hormone systems, and the relationships between hormonal variation and a variety of processes including phenotypic variation, fitness, and species distributions.


Asunto(s)
Andrógenos/sangre , Bases de Datos Factuales , Glucocorticoides/sangre , Vertebrados , Animales , Evolución Biológica , Femenino , Masculino , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...