Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39185220

RESUMEN

Cardiovascular disease (CVD) is associated with both genetic variants and environmental factors. One unifying consequence of the molecular risk factors in CVD is DNA damage, which must be repaired by DNA damage response proteins. However, the impact of DNA damage on global cardiomyocyte protein abundance, and its relationship to CVD risk remains unclear. We therefore treated induced pluripotent stem cell-derived cardiomyocytes with the DNA-damaging agent Doxorubicin (DOX) and a vehicle control, and identified 4,178 proteins that contribute to a network comprising 12 co-expressed modules and 403 hub proteins with high intramodular connectivity. Five modules correlate with DOX and represent distinct biological processes including RNA processing, chromatin regulation and metabolism. DOX-correlated hub proteins are depleted for proteins that vary in expression across individuals due to genetic variation but are enriched for proteins encoded by loss-of-function intolerant genes. While proteins associated with genetic risk for CVD, such as arrhythmia are enriched in specific DOX-correlated modules, DOX-correlated hub proteins are not enriched for known CVD risk proteins. Instead, they are enriched among proteins that physically interact with CVD risk proteins. Our data demonstrate that DNA damage in cardiomyocytes induces diverse effects on biological processes through protein co-expression modules that are relevant for CVD, and that the level of protein connectivity in DNA damage-associated modules influences the tolerance to genetic variation.

2.
Nat Commun ; 15(1): 3937, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38729924

RESUMEN

Human natural killer (NK) cell-based therapies are under assessment for treating various cancers, but cryopreservation reduces both the recovery and function of NK cells, thereby limiting their therapeutic feasibility. Using cryopreservation protocols optimized for T cells, here we find that ~75% of NK cells die within 24 h post-thaw, with the remaining cells displaying reduced cytotoxicity. Using CRISPR-Cas9 gene editing and confocal microscopy, we find that cryopreserved NK cells largely die via apoptosis initiated by leakage of granzyme B from cytotoxic vesicles. Pretreatment of NK cells with a combination of Interleukins-15 (IL-15) and IL-18 prior to cryopreservation improves NK cell recovery to ~90-100% and enables equal tumour control in a xenograft model of disseminated Raji cell lymphoma compared to non-cryopreserved NK cells. The mechanism of IL-15 and IL-18-induced protection incorporates two mechanisms: a transient reduction in intracellular granzyme B levels via degranulation, and the induction of antiapoptotic genes.


Asunto(s)
Apoptosis , Criopreservación , Granzimas , Interleucina-15 , Interleucina-18 , Células Asesinas Naturales , Granzimas/metabolismo , Interleucina-15/metabolismo , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Humanos , Interleucina-18/metabolismo , Animales , Criopreservación/métodos , Ratones , Línea Celular Tumoral , Sistemas CRISPR-Cas
3.
PLoS Genet ; 20(2): e1011164, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38416769

RESUMEN

TOP2 inhibitors (TOP2i) are effective drugs for breast cancer treatment. However, they can cause cardiotoxicity in some women. The most widely used TOP2i include anthracyclines (AC) Doxorubicin (DOX), Daunorubicin (DNR), Epirubicin (EPI), and the anthraquinone Mitoxantrone (MTX). It is unclear whether women would experience the same adverse effects from all drugs in this class, or if specific drugs would be preferable for certain individuals based on their cardiotoxicity risk profile. To investigate this, we studied the effects of treatment of DOX, DNR, EPI, MTX, and an unrelated monoclonal antibody Trastuzumab (TRZ) on iPSC-derived cardiomyocytes (iPSC-CMs) from six healthy females. All TOP2i induce cell death at concentrations observed in cancer patient serum, while TRZ does not. A sub-lethal dose of all TOP2i induces limited cellular stress but affects calcium handling, a function critical for cardiomyocyte contraction. TOP2i induce thousands of gene expression changes over time, giving rise to four distinct gene expression response signatures, denoted as TOP2i early-acute, early-sustained, and late response genes, and non-response genes. There is no drug- or AC-specific signature. TOP2i early response genes are enriched in chromatin regulators, which mediate AC sensitivity across breast cancer patients. However, there is increased transcriptional variability between individuals following AC treatments. To investigate potential genetic effects on response variability, we first identified a reported set of expression quantitative trait loci (eQTLs) uncovered following DOX treatment in iPSC-CMs. Indeed, DOX response eQTLs are enriched in genes that respond to all TOP2i. Next, we identified 38 genes in loci associated with AC toxicity by GWAS or TWAS. Two thirds of the genes that respond to at least one TOP2i, respond to all ACs with the same direction of effect. Our data demonstrate that TOP2i induce thousands of shared gene expression changes in cardiomyocytes, including genes near SNPs associated with inter-individual variation in response to DOX treatment and AC-induced cardiotoxicity.


Asunto(s)
Antraciclinas , Cardiotoxicidad , Humanos , Femenino , Antraciclinas/efectos adversos , Antraciclinas/metabolismo , Cardiotoxicidad/genética , Cardiotoxicidad/metabolismo , Antibióticos Antineoplásicos/efectos adversos , Antibióticos Antineoplásicos/metabolismo , Inhibidores de Topoisomerasa II/metabolismo , Inhibidores de Topoisomerasa II/farmacología , Doxorrubicina/efectos adversos , Doxorrubicina/metabolismo , Mitoxantrona/efectos adversos , Mitoxantrona/metabolismo , Miocitos Cardíacos/metabolismo , Daunorrubicina/metabolismo , Daunorrubicina/farmacología , Epirrubicina/metabolismo , Epirrubicina/farmacología , ADN-Topoisomerasas de Tipo II/genética , Expresión Génica
4.
Blood ; 143(2): 139-151, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-37616575

RESUMEN

ABSTRACT: Patients with multiple myeloma (MM) treated with B-cell maturation antigen (BCMA)-specific chimeric antigen receptor (CAR) T cells usually relapse with BCMA+ disease, indicative of CAR T-cell suppression. CD200 is an immune checkpoint that is overexpressed on aberrant plasma cells (aPCs) in MM and is an independent negative prognostic factor for survival. However, CD200 is not present on MM cell lines, a potential limitation of current preclinical models. We engineered MM cell lines to express CD200 at levels equivalent to those found on aPCs in MM and show that these are sufficient to suppress clinical-stage CAR T-cells targeting BCMA or the Tn glycoform of mucin 1 (TnMUC1), costimulated by 4-1BB and CD2, respectively. To prevent CD200-mediated suppression of CAR T cells, we compared CRISPR-Cas9-mediated knockout of the CD200 receptor (CD200RKO), to coexpression of versions of the CD200 receptor that were nonsignaling, that is, dominant negative (CD200RDN), or that leveraged the CD200 signal to provide CD28 costimulation (CD200R-CD28 switch). We found that the CD200R-CD28 switch potently enhanced the polyfunctionality of CAR T cells, and improved cytotoxicity, proliferative capacity, CAR T-cell metabolism, and performance in a chronic antigen exposure assay. CD200RDN provided modest benefits, but surprisingly, the CD200RKO was detrimental to CAR T-cell activity, adversely affecting CAR T-cell metabolism. These patterns held up in murine xenograft models of plasmacytoma, and disseminated bone marrow predominant disease. Our findings underscore the importance of CD200-mediated immune suppression in CAR T-cell therapy of MM, and highlight a promising approach to enhance such therapies by leveraging CD200 expression on aPCs to provide costimulation via a CD200R-CD28 switch.


Asunto(s)
Inmunoterapia Adoptiva , Mieloma Múltiple , Humanos , Ratones , Animales , Mieloma Múltiple/metabolismo , Antígenos CD28/metabolismo , Linfocitos T , Antígeno de Maduración de Linfocitos B/metabolismo , Recurrencia Local de Neoplasia/metabolismo
5.
Obesity (Silver Spring) ; 32(2): 315-323, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37964700

RESUMEN

OBJECTIVE: Given the complex interaction among the circadian system, energy metabolism, and obesity, the authors tested whether having obesity impacts the circadian variation in energy and glucose metabolism in humans. METHODS: Participants with BMI either in the healthy weight or obesity ranges were studied in a 5-day, in-laboratory protocol that equally distributed behaviors (i.e., sleep, eating, exercise) across 24 h. Energy metabolism was measured at rest and during a standardized exercise bout and blood was sampled before and after each identical study meal to assess glucose and insulin levels. RESULTS: In those with a healthy weight, the circadian nadir of energy expenditure, during both rest and exercise, occurred when participants would normally be asleep. However, in those with obesity, this nadir appears to occur during the habitual wake period. Differences in glucose regulation also depended on the circadian phase, such that individuals with obesity appeared to have relatively greater glucose intolerance during the circadian day and produced less insulin during the circadian night. CONCLUSIONS: Obesity is associated with altered circadian energy and glucose metabolism. Understanding and addressing these associations could lead to strategies that improve body weight and metabolic health in people with obesity.


Asunto(s)
Ritmo Circadiano , Glucosa , Humanos , Ritmo Circadiano/fisiología , Glucemia/metabolismo , Obesidad/metabolismo , Insulina , Metabolismo Energético/fisiología
6.
Cancer Immunol Res ; 11(11): 1524-1537, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37649085

RESUMEN

Natural killer (NK) cells are frequently expanded for the clinic using irradiated, engineered K562 feeder cells expressing a core transgene set of membrane-bound (mb) IL15 and/or mbIL21 together with 41BBL. Prior comparisons of mbIL15 to mbIL21 for NK expansion lack comparisons of key attributes of the resulting NK cells, including their high-dimensional phenotype, polyfunctionality, the breadth and potency of cytotoxicity, cellular metabolism, and activity in xenograft tumor models. Moreover, despite multiple rounds of K562 stimulation, studies of sequential use of mbIL15- and mbIL21-based feeder cells are absent. We addressed these gaps and found that using mbIL15- versus mbIL21-based feeder cells drove distinct phenotypic and functional profiles. Feeder cells expressing mbIL15 alone drove superior functionality by nearly all measures, whereas those expressing mbIL21 alone drove superior yield. In combination, most attributes resembled those imparted by mbIL21, whereas in sequence, NK yield approximated that imparted by the first cytokine, and the phenotype, transcriptome, and function resembled that driven by the second cytokine, highlighting the plasticity of NK cell differentiation. The sequence mbIL21 followed by mbIL15 was advantageous in achieving significant yields of highly functional NK cells that demonstrated equivalent in vivo activity to those expanded by mbIL15 alone in two of three xenograft models. Our findings define the impact of mbIL15 versus mbIL21 during NK expansion and reveal a previously underappreciated tradeoff between NK yield and function for which sequential use of mbIL21-based followed by mbIL15-based feeder cells may be the optimal approach in many settings.


Asunto(s)
Interleucina-15 , Células Asesinas Naturales , Humanos , Interleucina-15/metabolismo , Células K562 , Células Asesinas Naturales/metabolismo , Proliferación Celular , Citocinas/metabolismo
7.
Proc Natl Acad Sci U S A ; 120(12): e2218632120, 2023 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-36920923

RESUMEN

A fundamental limitation of T cell therapies in solid tumors is loss of inflammatory effector functions, such as cytokine production and proliferation. Here, we target a regulatory axis of T cell inflammatory responses, Regnase-1 and Roquin-1, to enhance antitumor responses in human T cells engineered with two clinical-stage immune receptors. Building on previous observations of Regnase-1 or Roquin-1 knockout in murine T cells or in human T cells for hematological malignancy models, we found that knockout of either Regnase-1 or Roquin-1 alone enhances antitumor function in solid tumor models, but that knockout of both Regnase-1 and Roquin-1 increases function further than knockout of either regulator alone. Double knockout of Regnase-1 and Roquin-1 increased resting T cell inflammatory activity and led to at least an order of magnitude greater T cell expansion and accumulation in xenograft mouse models, increased cytokine activity, and persistence. However double knockout of Regnase-1 and Roguin-1 also led to a lymphoproliferative syndrome and toxicity in some mice. These results suggest that regulators of immune inflammatory functions may be interesting targets to modulate to improve antitumor responses.


Asunto(s)
Endorribonucleasas , Linfocitos T , Humanos , Ratones , Animales , Citocinas , Ribonucleasas/genética
8.
Radiology ; 303(1): 215-225, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35014906

RESUMEN

Background Transarterial embolization (TAE) is the most common treatment for hepatocellular carcinoma (HCC); however, there remain limited data describing the influence of TAE on the tumor immune microenvironment. Purpose To characterize TAE-induced modulation of the tumor immune microenvironment in a rat model of HCC and identify factors that modulate this response. Materials and Methods TAE was performed on autochthonous HCCs induced in rats with use of diethylnitrosamine. CD3, CD4, CD8, and FOXP3 lymphocytes, as well as programmed cell death protein ligand-1 (PD-L1) expression, were examined in three cohorts: tumors from rats that did not undergo embolization (control), embolized tumors (target), and nonembolized tumors from rats that had a different target tumor embolized (nontarget). Differences in immune cell recruitment associated with embolic agent type (tris-acryl gelatin microspheres [TAGM] vs hydrogel embolics) and vascular location were examined in rat and human tissues. A generalized estimating equation model and t, Mann-Whitney U, and χ2 tests were used to compare groups. Results Cirrhosis-induced alterations in CD8, CD4, and CD25/CD4 lymphocytes were partially normalized following TAE (CD8: 38.4%, CD4: 57.6%, and CD25/CD4: 21.1% in embolized liver vs 47.7% [P = .02], 47.0% [P = .01], and 34.9% [P = .03], respectively, in cirrhotic liver [36.1%, 59.6%, and 4.6% in normal liver]). Embolized tumors had a greater number of CD3, CD4, and CD8 tumor-infiltrating lymphocytes relative to controls (191.4 cells/mm2 vs 106.7 cells/mm2 [P = .03]; 127.8 cells/mm2 vs 53.8 cells/mm2 [P < .001]; and 131.4 cells/mm2 vs 78.3 cells/mm2 [P = .01]) as well as a higher PD-L1 expression score (4.1 au vs 1.9 au [P < .001]). A greater number of CD3, CD4, and CD8 lymphocytes were found near TAGM versus hydrogel embolics (4.1 vs 2.0 [P = .003]; 3.7 vs 2.0 [P = .01]; and 2.2 vs 1.1 [P = .03], respectively). The number of lymphocytes adjacent to embolics differed based on vascular location (17.9 extravascular CD68+ peri-TAGM cells vs 7.0 intravascular [P < .001]; 6.4 extravascular CD68+ peri-hydrogel embolic cells vs 3.4 intravascular [P < .001]). Conclusion Transarterial embolization-induced dynamic alterations of the tumor immune microenvironment are influenced by underlying liver disease, embolic agent type, and vascular location. © RSNA, 2022 Online supplemental material is available for this article. See also the editorials by Kennedy et al and by White in this issue.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Antígeno B7-H1 , Carcinoma Hepatocelular/patología , Humanos , Hidrogeles , Inmunidad , Neoplasias Hepáticas/patología , Ratas , Microambiente Tumoral
9.
NMR Biomed ; 34(6): e4502, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33772910

RESUMEN

This study investigates the in vivo pharmacokinetics and pharmacodynamics of hyperpolarized [1-13 C]-pyruvate in a translational cancer model in order to inform the application of dynamic nuclear polarization (DNP)-enhanced magnetic resonance spectroscopic imaging (MRSI) as a tool for imaging liver cancer. Intratumoral metabolism within autochthonous hepatocellular carcinomas in male Wistar rats was analyzed by MRSI following hyperpolarized [1-13 C]-pyruvate injections with 80 mM (low dose [LD]) or 160 mM (high dose [HD]) pyruvate. Rats received (i) LD followed by HD injection, (ii) sequential LD injections with or without an interposed lactate dehydrogenase inhibitor (LDHi) injection, or (iii) a single LD injection. A subset of rats in (ii) were sacrificed immediately after imaging, permitting measurement of active LDH concentrations in tumor extracts. Urine and serum were collected before and after injections for rats in (iii). Comparison of LD and HD injections confirmed concentration-dependent variation of intratumoral metabolite fractions and intermetabolite ratios. In addition, quantification of the lactate-to-pyruvate ratio was sensitive to pharmacologic inhibition with intermetabolite ratios correlating with active LDH concentrations in tumor extracts. Finally, comparison of pre- and post-DNP urine collections revealed that pyruvate and the radical source are renally excreted after injection. These data demonstrate that DNP-MRSI facilitates real-time quantification of intratumoral metabolism that is repeatable and reflective of intracellular processes. A translational model system confirmed that interpretation requires consideration of probe dose, administration frequency and excretion.


Asunto(s)
Isótopos de Carbono/química , Imagen por Resonancia Magnética , Modelos Biológicos , Ácido Pirúvico/farmacología , Ácido Pirúvico/farmacocinética , Investigación Biomédica Traslacional , Animales , Masculino , Ácido Pirúvico/sangre , Ácido Pirúvico/metabolismo , Ratas Wistar , Reproducibilidad de los Resultados
11.
Neurobiol Dis ; 146: 105130, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33065281

RESUMEN

Proteinaceous aggregates are major hallmarks of several neurodegenerative diseases. Aggregates of post-translationally modified transactive response (TAR)-DNA binding protein 43 (TDP-43) in cytoplasmic inclusion bodies are characteristic features in frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). Recent studies have also reported TDP-43 aggregation in Alzheimer's disease (AD). TDP-43 is an RNA/DNA binding protein (RBP) mainly present in the nucleus. In addition to several RBPs, TDP-43 has also been reported in stress granules in FTD and ALS pathologies. Despite knowledge of cytoplasmic mislocalization of TDP-43, the cellular effects of TDP-43 aggregates and their cytotoxic mechanism(s) remain to be clarified. We hypothesize that TDP-43 forms oligomeric assemblies that associate with tau, another key protein involved in ALS and FTD. However, no prior studies have investigated the interactions between TDP-43 oligomers and tau. It is therefore important to thoroughly investigate the cross-seeding properties and cellular localization of both TDP-43 and tau oligomers in neurodegenerative diseases. Here, we demonstrate the effect of tau on the cellular localization of TDP-43 in WT and P301L tau-inducible cell models (iHEK) and in WT HEK-293 cells treated exogenously with soluble human recombinant tau oligomers (Exo-rTauO). We observed cytoplasmic TDP-43 accumulation o in the presence of tau in these cell models. We also studied the occurrence of TDP-43 oligomers in AD, ALS, and FTD human brain tissue using novel antibodies generated against TDP-43 oligomers as well as generic TDP-43 antibodies. Finally, we examined the cross-seeding property of AD, ALS, and FTD brain-derived TDP-43 oligomers (BDT43Os) on tau aggregation using biochemical and biophysical assays. Our results allow us to speculate that TDP-43/tau interactions might play a role in AD, ALS, and FTD.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Proteínas de Unión al ADN/metabolismo , Demencia Frontotemporal/metabolismo , Proteínas tau/metabolismo , Enfermedad de Alzheimer/metabolismo , Demencia Frontotemporal/patología , Humanos , Enfermedad de Pick/fisiopatología , Agregación Patológica de Proteínas/metabolismo , Proteínas de Unión al ARN/metabolismo
12.
Nat Commun ; 11(1): 4305, 2020 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-32855391

RESUMEN

Oligomeric assemblies of tau and the RNA-binding proteins (RBPs) Musashi (MSI) are reported in Alzheimer's disease (AD). However, the role of MSI and tau interaction in their aggregation process and its effects are nor clearly known in neurodegenerative diseases. Here, we investigated the expression and cellular localization of MSI1 and MSI2 in the brains tissues of Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) as well as in the wild-type mice and tau knock-out and P301L tau mouse models. We observed that formation of pathologically relevant protein inclusions was driven by the aberrant interactions between MSI and tau in the nuclei associated with age-dependent extracellular depositions of tau/MSI complexes. Furthermore, tau and MSI interactions induced impairment of nuclear/cytoplasm transport, chromatin remodeling and nuclear lamina formation. Our findings provide mechanistic insight for pathological accumulation of MSI/tau aggregates providing a potential basis for therapeutic interventions in neurodegenerative proteinopathies.


Asunto(s)
Núcleo Celular/patología , Proteínas del Tejido Nervioso/metabolismo , Enfermedades Neurodegenerativas/patología , Proteínas de Unión al ARN/metabolismo , Proteínas tau/metabolismo , Transporte Activo de Núcleo Celular , Anciano , Anciano de 80 o más Años , Animales , Núcleo Celular/metabolismo , Ensamble y Desensamble de Cromatina , Citoplasma/metabolismo , Modelos Animales de Enfermedad , Femenino , Lóbulo Frontal/citología , Lóbulo Frontal/patología , Células HEK293 , Humanos , Cuerpos de Inclusión/patología , Masculino , Ratones , Ratones Transgénicos , Persona de Mediana Edad , Agregado de Proteínas , Unión Proteica , Proteínas tau/genética
13.
J Vasc Interv Radiol ; 31(10): 1612-1618.e1, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32826152

RESUMEN

PURPOSE: To evaluate the utility of visualizing preprocedural MR images in 3-dimensional (3D) space using augmented reality (AR) before transarterial embolization of hepatocellular carcinoma (HCC) in a preclinical model. MATERIALS AND METHODS: A total of 28 rats with diethylnitrosamine-induced HCCs > 5 mm treated with embolization were included in a prospective study. In 12 rats, 3D AR visualization of preprocedural MR images was performed before embolization. Procedural metrics including catheterization time and radiation exposure were compared vs a prospective cohort of 16 rats in which embolization was performed without AR. An additional cohort of 15 retrospective cases was identified and combined with the prospective control cohort (n = 31) to improve statistical power. RESULTS: A 37% reduction in fluoroscopy time, from 11.7 min to 7.4 minutes, was observed with AR when compared prospectively, which did not reach statistical significance (P = .12); however, when compared with combined prospective and retrospective controls, the reduction in fluoroscopy time from 14.1 min to 7.4 minutes (48%) was significant (P = .01). A 27% reduction in total catheterization time, from 42.7 minutes to 31.0 minutes, was also observed with AR when compared prospectively, which did not reach statistical significance (P = .11). No significant differences were seen in dose-area product or air kerma prospectively. CONCLUSIONS: Three-dimensional AR visualization of preprocedural imaging may aid in the reduction of procedural metrics in a preclinical model of transarterial embolization. These data support the need for further studies to evaluate the potential of AR in endovascular oncologic interventions.


Asunto(s)
Resinas Acrílicas/administración & dosificación , Realidad Aumentada , Carcinoma Hepatocelular/terapia , Embolización Terapéutica , Gelatina/administración & dosificación , Holografía , Neoplasias Hepáticas Experimentales/terapia , Imagen por Resonancia Magnética , Animales , Carcinoma Hepatocelular/inducido químicamente , Carcinoma Hepatocelular/diagnóstico por imagen , Dietilnitrosamina , Femenino , Fluoroscopía , Neoplasias Hepáticas Experimentales/inducido químicamente , Neoplasias Hepáticas Experimentales/diagnóstico por imagen , Masculino , Valor Predictivo de las Pruebas , Dosis de Radiación , Exposición a la Radiación , Ratas , Factores de Tiempo
14.
Clin Cancer Res ; 26(17): 4581-4589, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32499234

RESUMEN

PURPOSE: Targeted therapies for cancer have accelerated the need for functional imaging strategies that inform therapeutic efficacy. This study assesses the potential of functional genetic screening to integrate therapeutic target identification with imaging probe selection through a proof-of-principle characterization of a therapy-probe pair using dynamic nuclear polarization (DNP)-enhanced magnetic resonance spectroscopic imaging (MRSI). EXPERIMENTAL DESIGN: CRISPR-negative selection screens from a public dataset were used to identify the relative dependence of 625 cancer cell lines on 18,333 genes. Follow-up screening was performed in hepatocellular carcinoma with a focused CRISPR library targeting imaging-related genes. Hyperpolarized [1-13C]-pyruvate was injected before and after lactate dehydrogenase inhibitor (LDHi) administration in male Wistar rats with autochthonous hepatocellular carcinoma. MRSI evaluated intratumoral pyruvate metabolism, while T2-weighted segmentations quantified tumor growth. RESULTS: Genetic screening data identified differential metabolic vulnerabilities in 17 unique cancer types that could be imaged with existing probes. Among these, hepatocellular carcinoma required lactate dehydrogenase (LDH) for growth more than the 29 other cancer types in this database. LDH inhibition led to a decrease in lactate generation (P < 0.001) and precipitated dose-dependent growth inhibition (P < 0.01 overall, P < 0.05 for dose dependence). Intratumoral alanine production after inhibition predicted the degree of growth reduction (P < 0.001). CONCLUSIONS: These findings demonstrate that DNP-MRSI of LDH activity using hyperpolarized [1-13C]-pyruvate is a theranostic strategy for hepatocellular carcinoma, enabling quantification of intratumoral LDHi pharmacodynamics and therapeutic efficacy prediction. This work lays the foundation for a novel theranostic platform wherein functional genetic screening informs imaging probe selection to quantify therapeutic efficacy on a cancer-by-cancer basis.


Asunto(s)
Espectroscopía de Resonancia Magnética con Carbono-13/métodos , Carcinoma Hepatocelular/diagnóstico , Neoplasias Hepáticas Experimentales/diagnóstico , Neoplasias Hepáticas/diagnóstico , Imagen Molecular/métodos , Animales , Sistemas CRISPR-Cas/genética , Carcinoma Hepatocelular/inducido químicamente , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Conjuntos de Datos como Asunto , Dietilnitrosamina/administración & dosificación , Dietilnitrosamina/toxicidad , Detección Precoz del Cáncer/métodos , Humanos , L-Lactato Deshidrogenasa/antagonistas & inhibidores , L-Lactato Deshidrogenasa/genética , L-Lactato Deshidrogenasa/metabolismo , Ácido Láctico/metabolismo , Hígado/diagnóstico por imagen , Hígado/patología , Neoplasias Hepáticas/inducido químicamente , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Neoplasias Hepáticas Experimentales/inducido químicamente , Neoplasias Hepáticas Experimentales/genética , Neoplasias Hepáticas Experimentales/patología , Masculino , Sondas Moleculares/administración & dosificación , Sondas Moleculares/farmacocinética , Medicina de Precisión/métodos , Prueba de Estudio Conceptual , Ácido Pirúvico/metabolismo , Ratas
15.
Mater Sci Eng C Mater Biol Appl ; 110: 110659, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32204087

RESUMEN

Herein, for the first time, we demonstrate that the combination of copper-cysteamine (Cu-Cy) nanoparticles (NPs) and potassium iodide (KI) can significantly inactivate both Gram-positive MRSA and Gram-negative E. coli. To uncover the mystery of the killing, the interaction of KI with Cu-Cy NPs was investigated systematically and the products from their interaction were identified. No copper ions were released after adding KI to Cu-Cy NPs in cell-free medium and, therefore, it is reasonable to conclude that the Fenton reaction induced by copper ions is not responsible for the bacterial killing. Based on the observations, we propose that the major killing mechanism involves the generation of toxic species, such as hydrogen peroxide, triiodide ions, iodide ions, singlet oxygen, and iodine molecules. Overall, the powerful combination of Cu-Cy NPs and KI has good potential as an independent treatment or a complementary antibiotic treatment to infectious diseases.


Asunto(s)
Bacterias/efectos de los fármacos , Cobre/farmacología , Cisteamina/farmacología , Nanopartículas/química , Yoduro de Potasio/farmacología , Bacterias/efectos de la radiación , Escherichia coli/efectos de los fármacos , Escherichia coli/efectos de la radiación , Pruebas de Sensibilidad Microbiana , Viabilidad Microbiana/efectos de los fármacos , Nanopartículas/ultraestructura , Fotoquimioterapia , Especies Reactivas de Oxígeno/metabolismo , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/efectos de la radiación , Rayos Ultravioleta
16.
J Mater Chem B ; 8(7): 1396-1404, 2020 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-31971208

RESUMEN

In this study, CuS@PDA nanoparticles were synthesized and used to create a novel tumor-targeting nanocomposite platform composed of copper sulfide@polydopamine-folic acid/doxorubicin (CuS@PDA-FA/DOX) for performing both photothermal and chemotherapeutic cancer treatment. The nanocomposite platform has ultrahigh loading levels (4.2 ± 0.2 mg mg-1) and a greater photothermal conversion efficiency (η = 42.7%) than CuS/PDA alone. The uptake of CuS@PDA-FA/DOX nanocomposites is much higher in MCF-7 cells than in A549 cells because MCF-7 cells have much higher folic acid receptors than A549. Under near infrared (NIR) irradiation, the CuS@PDA-FA/DOX system using a synergistic combination of photothermal therapy and chemotherapy yields a better therapeutic effect than either photothermal therapy or chemotherapy alone. The treatment is very effective with the cell viability is only 5.6 ± 1.4%.


Asunto(s)
Antibióticos Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Doxorrubicina/farmacología , Sistemas de Liberación de Medicamentos , Nanocompuestos/química , Terapia Fototérmica , Células A549 , Antibióticos Antineoplásicos/química , Neoplasias de la Mama/patología , Supervivencia Celular/efectos de los fármacos , Cobre/química , Doxorrubicina/química , Portadores de Fármacos/química , Ensayos de Selección de Medicamentos Antitumorales , Ácido Fólico/química , Humanos , Indoles/química , Células MCF-7 , Tamaño de la Partícula , Polímeros/química , Propiedades de Superficie
17.
Hepatology ; 72(1): 140-154, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-31553806

RESUMEN

BACKGROUND AND AIMS: Advances in cancer treatment have improved survival; however, local recurrence and metastatic disease-the principal causes of cancer mortality-have limited the ability to achieve durable remissions. Local recurrences arise from latent tumor cells that survive therapy and are often not detectable by conventional clinical imaging techniques. Local recurrence after transarterial embolization (TAE) of hepatocellular carcinoma (HCC) provides a compelling clinical correlate of this phenomenon. In response to TAE-induced ischemia, HCC cells adapt their growth program to effect a latent phenotype that precedes local recurrence. APPROACH AND RESULTS: In this study, we characterized and leveraged the metabolic reprogramming demonstrated by latent HCC cells in response to TAE-induced ischemia to enable their detection in vivo using dynamic nuclear polarization (DNP) magnetic resonance spectroscopic imaging (MRSI) of 13 carbon-labeled substrates. Under TAE-induced ischemia, latent HCC cells demonstrated reduced metabolism and developed a dependence on glycolytic flux to lactate. Despite the hypometabolic state of these cells, DNP-MRSI of 1-13 C-pyruvate and its downstream metabolites, 1-13 C-lactate and 1-13 C-alanine, predicted histological viability. CONCLUSIONS: These studies provide a paradigm for imaging latent, treatment-refractory cancer cells, suggesting that DNP-MRSI provides a technology for this application.


Asunto(s)
Carcinoma Hepatocelular/diagnóstico por imagen , Carcinoma Hepatocelular/terapia , Embolización Terapéutica , Neoplasias Hepáticas/diagnóstico por imagen , Neoplasias Hepáticas/terapia , Imagen por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética , Animales , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Modelos Animales de Enfermedad , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Masculino , Ratas , Ratas Wistar
18.
ACS Appl Bio Mater ; 3(3): 1804-1814, 2020 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-35021670

RESUMEN

Herein, for the first time, we report copper-cysteamine (Cu-Cy) nanoparticles having Cu1+ instead of Cu2+ as an efficient heterogeneous Fenton-like catalyst for highly selective cancer treatment. Initial measurements of Cu-Cy's hydroxyl radical generation ability show that it behaves as a Fenton-like reagent in the presence of H2O2 (100 µM) at pH 7.4, and that its Fenton-like activity is dramatically enhanced under acidic conditions (pH 6.5 and 5.5). Notably, Cu-Cy exhibits high stability and minimal copper release during the Fenton-like reaction, demonstrating its potency as a heterogeneous Fenton-like catalyst with a low cytotoxic effect. Through extensive in vitro studies, Cu-Cy NPs are found to generate a significantly higher level of ROS, thereby causing significantly more destruction to cancerous cells than to normal cells without the need for exogenous additives, such as H2O2. To the best of our knowledge, the average IC-50 value of Cu-Cy to cancer cells (11 µg/mL) is the lowest among reported heterogeneous Fenton-like nanocatalyst so far. Additionally, compared to cancer cells, Cu-Cy NPs display substantially higher IC-50 value toward normal cells (50 µg/mL), suggesting high selectivity. Overall, Cu-Cy NPs can participate in heterogeneous Fenton-like activity with elevated H2O2 under acidic conditions to produce significantly higher levels of hydroxyl radicals in cancer cells when compared to normal cells, resulting in selective cytotoxicity to cancer cells.

19.
J Mater Chem B ; 7(42): 6630-6642, 2019 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-31591609

RESUMEN

Copper-cysteamine (Cu-Cy) is a novel sensitizer that can be excited by ultraviolet (UV) light, microwave (MW), ultrasound, and X-rays to generate highly toxic reactive oxygen species (ROS) for cancer cell destruction. The purpose of this study is to present a facile method for the synthesis of Cu-Cy nanoparticles. Interestingly, we were able to decrease both the stirring and heating time by about 24 and 6 times, respectively, thus making Cu-Cy nanoparticles more economical than what was reported before. 1,4-Diazabicylo[2.2.2]octane (DABCO), a well-known singlet oxygen quencher, showed that the majority of ROS produced by Cu-Cy nanoparticles upon UV and MW exposure were singlet oxygen. Moreover, ROS generated by Cu-Cy nanoparticles upon UV and MW exposure were confirmed by a known ROS tracking agent, dihydrorhodamine 123, further serving as an additional piece of evidence that Cu-Cy is a promising ROS generating agent to destroy cancer cells as well as bacteria or viruses by a radical therapeutic approach. Additionally, for the first time, the hydroxyl radical (˙OH) produced by Cu-Cy nanoparticles upon MW activation was proved by a photoluminescence (PL) technique using coumarin as a probe molecule. Remarkably, newly synthesized nanoparticles were found to be much more effective for producing ROS and killing cancer cells, suggesting that the new method may have increased the reactivity of the Cu-Cy nanoparticles due to an overall size reduction. Overall, the new method not only reduced the synthesis time but also enhanced the effectiveness of Cu-Cy nanoparticles for photodynamic therapy.


Asunto(s)
Antineoplásicos/farmacología , Nanopartículas del Metal/química , Neoplasias/metabolismo , Fármacos Fotosensibilizantes/farmacología , Especies Reactivas de Oxígeno/metabolismo , Antineoplásicos/síntesis química , Antineoplásicos/efectos de la radiación , Línea Celular Tumoral , Cobre/química , Cobre/efectos de la radiación , Cisteamina/química , Cisteamina/efectos de la radiación , Humanos , Radical Hidroxilo/metabolismo , Nanopartículas del Metal/efectos de la radiación , Microondas , Fármacos Fotosensibilizantes/síntesis química , Fármacos Fotosensibilizantes/efectos de la radiación , Oxígeno Singlete/metabolismo , Rayos Ultravioleta
20.
Mater Sci Eng C Mater Biol Appl ; 104: 109979, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31500001

RESUMEN

The efficacy of photodynamic therapy (PDT) is reduced in the context of hypoxic environments. This is problematic, considering that hypoxia is exhibited in the vast majority of malignant tumors. Thus, increasing the concentration of oxygen in malignant tumors improves PDT treatment outcomes. Studies show that MnO2 nanoparticles can produce oxygen when it reacts with endogenous H2O2. Herein, we encapsulated Protoporphyrin IX (PPIX) in the liposome bilayer (PPIX-Lipo), which was then coated with MnO2 nanoparticles to construct PPIX-Lipo-MnO2 (PPIX-Lipo-M) in order to enhance PDT efficacy under tumor hypoxia. The PDT results show that PPIX-Lipo-M was more cytotoxic to breast cancer cells than PPIX-Lipo while under hypoxic conditions, indicating that the production of oxygen gas in hypoxic conditions improved treatment outcomes. Upon encapsulating PPIX into the liposome, the aqueous solubility of PPIX significantly improved. Consequently, the cellular uptake of both PPIX-Lipo and PPIX-Lipo-M also increased significantly compared to that of bare PPIX. Overall, PPIX-Lipo-M has the capacity to act as a therapeutic agent that relieves hypoxia and hence improve PDT efficacy.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Liposomas/química , Compuestos de Manganeso/química , Óxidos/química , Protoporfirinas/química , Protoporfirinas/farmacología , Hipoxia Tumoral/efectos de los fármacos , Antineoplásicos/farmacología , Línea Celular Tumoral , Femenino , Humanos , Peróxido de Hidrógeno/farmacología , Células MCF-7 , Nanopartículas/química , Oxígeno/química , Fotoquimioterapia/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...