Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 45(17): 10306-10320, 2017 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-28973472

RESUMEN

Contact-dependent growth inhibition (CDI) is a mechanism of inter-cellular competition in which Gram-negative bacteria exchange polymorphic toxins using type V secretion systems. Here, we present structures of the CDI toxin from Escherichia coli NC101 in ternary complex with its cognate immunity protein and elongation factor Tu (EF-Tu). The toxin binds exclusively to domain 2 of EF-Tu, partially overlapping the site that interacts with the 3'-end of aminoacyl-tRNA (aa-tRNA). The toxin exerts a unique ribonuclease activity that cleaves the single-stranded 3'-end from tRNAs that contain guanine discriminator nucleotides. EF-Tu is required to support this tRNase activity in vitro, suggesting the toxin specifically cleaves substrate in the context of GTP·EF-Tu·aa-tRNA complexes. However, superimposition of the toxin domain onto previously solved GTP·EF-Tu·aa-tRNA structures reveals potential steric clashes with both aa-tRNA and the switch I region of EF-Tu. Further, the toxin induces conformational changes in EF-Tu, displacing a ß-hairpin loop that forms a critical salt-bridge contact with the 3'-terminal adenylate of aa-tRNA. Together, these observations suggest that the toxin remodels GTP·EF-Tu·aa-tRNA complexes to free the 3'-end of aa-tRNA for entry into the nuclease active site.


Asunto(s)
Toxinas Bacterianas/química , Proteínas de Escherichia coli/metabolismo , Factor Tu de Elongación Peptídica/metabolismo , ARN Bacteriano/metabolismo , ARN de Transferencia/metabolismo , Toxinas Bacterianas/metabolismo , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Guanina/metabolismo , Modelos Moleculares , Conformación de Ácido Nucleico , Conformación Proteica , Dominios Proteicos , Proteínas Recombinantes de Fusión/metabolismo , Relación Estructura-Actividad , Especificidad por Sustrato
2.
Proc Natl Acad Sci U S A ; 113(35): 9792-7, 2016 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-27531961

RESUMEN

Contact-dependent growth inhibition (CDI) is a widespread mechanism of bacterial competition. CDI(+) bacteria deliver the toxic C-terminal region of contact-dependent inhibition A proteins (CdiA-CT) into neighboring target bacteria and produce CDI immunity proteins (CdiI) to protect against self-inhibition. The CdiA-CT(EC536) deployed by uropathogenic Escherichia coli 536 (EC536) is a bacterial toxin 28 (Ntox28) domain that only exhibits ribonuclease activity when bound to the cysteine biosynthetic enzyme O-acetylserine sulfhydrylase A (CysK). Here, we present crystal structures of the CysK/CdiA-CT(EC536) binary complex and the neutralized ternary complex of CysK/CdiA-CT/CdiI(EC536) CdiA-CT(EC536) inserts its C-terminal Gly-Tyr-Gly-Ile peptide tail into the active-site cleft of CysK to anchor the interaction. Remarkably, E. coli serine O-acetyltransferase uses a similar Gly-Asp-Gly-Ile motif to form the "cysteine synthase" complex with CysK. The cysteine synthase complex is found throughout bacteria, protozoa, and plants, indicating that CdiA-CT(EC536) exploits a highly conserved protein-protein interaction to promote its toxicity. CysK significantly increases CdiA-CT(EC536) thermostability and is required for toxin interaction with tRNA substrates. These observations suggest that CysK stabilizes the toxin fold, thereby organizing the nuclease active site for substrate recognition and catalysis. By contrast, Ntox28 domains from Gram-positive bacteria lack C-terminal Gly-Tyr-Gly-Ile motifs, suggesting that they do not interact with CysK. We show that the Ntox28 domain from Ruminococcus lactaris is significantly more thermostable than CdiA-CT(EC536), and its intrinsic tRNA-binding properties support CysK-independent nuclease activity. The striking differences between related Ntox28 domains suggest that CDI toxins may be under evolutionary pressure to maintain low global stability.


Asunto(s)
Toxinas Bacterianas/química , Inhibición de Contacto/genética , Cisteína Sintasa/química , Proteínas de Escherichia coli/química , Escherichia coli Uropatógena/química , Secuencia de Aminoácidos , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Sitios de Unión , Clonación Molecular , Cristalografía por Rayos X , Cisteína Sintasa/genética , Cisteína Sintasa/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Modelos Moleculares , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estabilidad Proteica , Estructura Secundaria de Proteína , ARN de Transferencia/química , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ruminococcus/química , Ruminococcus/metabolismo , Especificidad por Sustrato , Escherichia coli Uropatógena/genética , Escherichia coli Uropatógena/metabolismo
3.
J Biol Chem ; 291(37): 19387-400, 2016 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-27445337

RESUMEN

Contact-dependent growth inhibition (CDI) is a widespread mechanism of inter-bacterial competition. CDI(+) bacteria deploy large CdiA effector proteins, which carry variable C-terminal toxin domains (CdiA-CT). CDI(+) cells also produce CdiI immunity proteins that specifically neutralize cognate CdiA-CT toxins to prevent auto-inhibition. Here, we present the crystal structure of the CdiA-CT/CdiI(E479) toxin/immunity protein complex from Burkholderia pseudomallei isolate E479. The CdiA-CT(E479) tRNase domain contains a core α/ß-fold that is characteristic of PD(D/E)XK superfamily nucleases. Unexpectedly, the closest structural homolog of CdiA-CT(E479) is another CDI toxin domain from B. pseudomallei 1026b. Although unrelated in sequence, the two B. pseudomallei nuclease domains share similar folds and active-site architectures. By contrast, the CdiI(E479) and CdiI(1026b) immunity proteins share no significant sequence or structural homology. CdiA-CT(E479) and CdiA-CT(1026b) are both tRNases; however, each nuclease cleaves tRNA at a distinct position. We used a molecular docking approach to model each toxin bound to tRNA substrate. The resulting models fit into electron density envelopes generated by small-angle x-ray scattering analysis of catalytically inactive toxin domains bound stably to tRNA. CdiA-CT(E479) is the third CDI toxin found to have structural homology to the PD(D/E)XK superfamily. We propose that CDI systems exploit the inherent sequence variability and active-site plasticity of PD(D/E)XK nucleases to generate toxin diversity. These findings raise the possibility that many other uncharacterized CDI toxins may belong to the PD(D/E)XK superfamily.


Asunto(s)
Proteínas Bacterianas/química , Burkholderia pseudomallei/química , Endorribonucleasas/química , Proteínas de la Membrana/química , Simulación del Acoplamiento Molecular , Complejos Multiproteicos/química , ARN Bacteriano/química , ARN de Transferencia/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Burkholderia pseudomallei/genética , Burkholderia pseudomallei/metabolismo , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Dominios Proteicos , Estructura Cuaternaria de Proteína , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/metabolismo
4.
J Mol Biol ; 427(23): 3766-84, 2015 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-26449640

RESUMEN

Contact-dependent growth inhibition (CDI) is a widespread mechanism of inter-bacterial competition mediated by the CdiB/CdiA family of two-partner secretion proteins. CdiA effectors carry diverse C-terminal toxin domains (CdiA-CT), which are delivered into neighboring target cells to inhibit growth. CDI(+) bacteria also produce CdiI immunity proteins that bind specifically to cognate CdiA-CT toxins and protect the cell from auto-inhibition. Here, we compare the structures of homologous CdiA-CT/CdiI complexes from Escherichia coli EC869 and Yersinia pseudotuberculosis YPIII to explore the evolution of CDI toxin/immunity protein interactions. Both complexes share an unusual ß-augmentation interaction, in which the toxin domain extends a ß-hairpin into the immunity protein to complete a six-stranded anti-parallel sheet. However, the specific contacts differ substantially between the two complexes. The EC869 ß-hairpin interacts mainly through direct H-bond and ion-pair interactions, whereas the YPIII ß-hairpin pocket contains more hydrophobic contacts and a network of bridging water molecules. In accord with these differences, we find that each CdiI protein only protects target bacteria from its cognate CdiA-CT toxin. The compact ß-hairpin binding pocket within the immunity protein represents a tractable system for the rationale design of small molecules to block CdiA-CT/CdiI complex formation. We synthesized a macrocyclic peptide mimic of the ß-hairpin from EC869 toxin and solved its structure in complex with cognate immunity protein. These latter studies suggest that small molecules could potentially be used to disrupt CDI toxin/immunity complexes.


Asunto(s)
Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/metabolismo , Proteínas de Escherichia coli/química , Proteínas de la Membrana/química , Yersinia pseudotuberculosis/química , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/inmunología , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Toxinas Bacterianas/inmunología , Cristalografía por Rayos X , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de la Membrana/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Complejos Multiproteicos , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Mapeo de Interacción de Proteínas , Relación Estructura-Actividad , Yersinia pseudotuberculosis/crecimiento & desarrollo
5.
Acta Crystallogr F Struct Biol Commun ; 71(Pt 6): 702-9, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26057799

RESUMEN

Contact-dependent growth inhibition (CDI) is an important mechanism of intercellular competition between neighboring Gram-negative bacteria. CDI systems encode large surface-exposed CdiA effector proteins that carry a variety of C-terminal toxin domains (CdiA-CTs). All CDI(+) bacteria also produce CdiI immunity proteins that specifically bind to the cognate CdiA-CT and neutralize its toxin activity to prevent auto-inhibition. Here, the X-ray crystal structure of a CdiI immunity protein from Neisseria meningitidis MC58 is presented at 1.45 Å resolution. The CdiI protein has structural homology to the Whirly family of RNA-binding proteins, but appears to lack the characteristic nucleic acid-binding motif of this family. Sequence homology suggests that the cognate CdiA-CT is related to the eukaryotic EndoU family of RNA-processing enzymes. A homology model is presented of the CdiA-CT based on the structure of the XendoU nuclease from Xenopus laevis. Molecular-docking simulations predict that the CdiA-CT toxin active site is occluded upon binding to the CdiI immunity protein. Together, these observations suggest that the immunity protein neutralizes toxin activity by preventing access to RNA substrates.


Asunto(s)
Toxinas Bacterianas/antagonistas & inhibidores , Toxinas Bacterianas/química , Proteínas de Escherichia coli/química , Neisseria meningitidis/química , Secuencias de Aminoácidos , Animales , Antibiosis/inmunología , Toxinas Bacterianas/inmunología , Inhibición de Contacto/inmunología , Cristalografía por Rayos X , Endorribonucleasas/química , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/inmunología , Expresión Génica , Simulación del Acoplamiento Molecular , Datos de Secuencia Molecular , Neisseria meningitidis/inmunología , Neisseria meningitidis/metabolismo , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Alineación de Secuencia , Homología Estructural de Proteína , Proteínas de Xenopus/química , Xenopus laevis/metabolismo
6.
J Inorg Biochem ; 133: 118-26, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24314844

RESUMEN

Mycobacterium tuberculosis, the pathogen that causes tuberculosis, has evolved sophisticated mechanisms for evading assault by the human host. This review focuses on M. tuberculosis regulatory metalloproteins that are sensitive to exogenous stresses attributed to changes in the levels of gaseous molecules (i.e., molecular oxygen, carbon monoxide and nitric oxide) to elicit an intracellular response. In particular, we highlight recent developments on the subfamily of Whi proteins, redox sensing WhiB-like proteins that contain iron-sulfur clusters, sigma factors and their cognate anti-sigma factors of which some are zinc-regulated, and the dormancy survival regulon DosS/DosT-DosR heme sensory system. Mounting experimental evidence suggests that these systems contribute to a highly complex and interrelated regulatory network that controls M. tuberculosis biology. This review concludes with a discussion of strategies that M. tuberculosis has developed to maintain redox homeostasis, including mechanisms to regulate endogenous nitric oxide and carbon monoxide levels.


Asunto(s)
Hipoxia/metabolismo , Metaloproteínas/metabolismo , Mycobacterium tuberculosis/metabolismo , Tuberculosis/microbiología , Monóxido de Carbono/metabolismo , Regulación Bacteriana de la Expresión Génica , Hemo/metabolismo , Humanos , Metaloproteínas/química , Metaloproteínas/genética , Mycobacterium tuberculosis/patogenicidad , Óxido Nítrico/metabolismo , Oxidación-Reducción , Oxígeno/metabolismo , Tuberculosis/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA