Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
J Med Chem ; 66(7): 4888-4909, 2023 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-36940470

RESUMEN

Immune activating agents represent a valuable class of therapeutics for the treatment of cancer. An area of active research is expanding the types of these therapeutics that are available to patients via targeting new biological mechanisms. Hematopoietic progenitor kinase 1 (HPK1) is a negative regulator of immune signaling and a target of high interest for the treatment of cancer. Herein, we present the discovery and optimization of novel amino-6-aryl pyrrolopyrimidine inhibitors of HPK1 starting from hits identified via virtual screening. Key components of this discovery effort were structure-based drug design aided by analyses of normalized B-factors and optimization of lipophilic efficiency.


Asunto(s)
Proteínas Serina-Treonina Quinasas , Transducción de Señal , Humanos , Proteínas Serina-Treonina Quinasas/metabolismo , Pirroles/farmacología
2.
Transp Res Rec ; 2677(4): 751-764, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38603305

RESUMEN

This article assesses the impact of the COVID-19 outbreak on the urban motorcycle taxi (MCT) sector in Sub-Saharan Africa (SSA). MCT operators in SSA provide essential transport services and have shown ingenuity and an ability to adapt and innovate when responding to different challenges, including health challenges. However, policymakers and regulators often remain somewhat hostile toward the sector. The article discusses the measures and restrictions put in place to reduce the spread of COVID-19 and key stakeholders' perspectives on these and on the sector's level of compliance. Primary data were collected in six SSA countries during the last quarter of 2020. Between 10 and 15 qualitative interviews with key stakeholders relevant to the urban MCT sector were conducted in each country. These interviews were conducted with stakeholders based in the capital city and a secondary city, to ensure a geographically broader understanding of the measures, restrictions, and perspectives. The impact of COVID-19 measures on the MCT and motor-tricycle taxi sector was significant and overwhelmingly negative. Lockdowns, restrictions on the maximum number of passengers allowed to be carried at once, and more generally, a COVID-19-induced reduction in demand, resulted in a drop in income for operators, according to the key stakeholders. However, some key stakeholders indicated an increase in MCT activity and income because of the motorcycles' ability to bypass police and army controls. In most study countries measures were formulated in a non-consultative manner. This, we argue, is symptomatic of governments' unwillingness to seriously engage with the sector.

3.
Hand (N Y) ; : 15589447221120850, 2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-36168306

RESUMEN

BACKGROUND: Surgery with volar locking plate (VLP) for distal radius fractures (DRFs) has become dominant over percutaneous Kirschner wire (K-wire) (PKW) fixation. Not many studies have proved advantages of the VLP and the increasing dominance of the VLP is thus not derived from evidence of superiority but influenced by other factors. METHODS: By retrospectively classifying 346 DRFs treated with either PKW or VLP fixation, according to the Buttazzoni classification system, we aimed to investigate the determining factors for choice of surgical method, and by review of the patients' medical records, the functional outcome, duration, and frequentness of the rehabilitation period were correlated to Buttazzoni type and surgical method. RESULTS: The odds ratio of having volar plate fixation was negatively correlated to age and positively correlated to a higher Buttazzoni type. We found no clinically significant differences in the functional outcome for different Buttazzoni type of fractures within the VLP and PKW groups, respectively, nor between the 2 methods of surgery for any Buttazzoni type of fracture. CONCLUSION: Younger patients and fractures with higher grade of instability were more likely to be treated with VLP than PKW; however, neither fracture instability nor surgical method had any impact on functional outcome.

4.
Nature ; 609(7925): 101-108, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35798029

RESUMEN

As SARS-CoV-2 continues to spread and evolve, detecting emerging variants early is critical for public health interventions. Inferring lineage prevalence by clinical testing is infeasible at scale, especially in areas with limited resources, participation, or testing and/or sequencing capacity, which can also introduce biases1-3. SARS-CoV-2 RNA concentration in wastewater successfully tracks regional infection dynamics and provides less biased abundance estimates than clinical testing4,5. Tracking virus genomic sequences in wastewater would improve community prevalence estimates and detect emerging variants. However, two factors limit wastewater-based genomic surveillance: low-quality sequence data and inability to estimate relative lineage abundance in mixed samples. Here we resolve these critical issues to perform a high-resolution, 295-day wastewater and clinical sequencing effort, in the controlled environment of a large university campus and the broader context of the surrounding county. We developed and deployed improved virus concentration protocols and deconvolution software that fully resolve multiple virus strains from wastewater. We detected emerging variants of concern up to 14 days earlier in wastewater samples, and identified multiple instances of virus spread not captured by clinical genomic surveillance. Our study provides a scalable solution for wastewater genomic surveillance that allows early detection of SARS-CoV-2 variants and identification of cryptic transmission.


Asunto(s)
COVID-19 , SARS-CoV-2 , Monitoreo Epidemiológico Basado en Aguas Residuales , Aguas Residuales , COVID-19/epidemiología , COVID-19/transmisión , COVID-19/virología , Humanos , ARN Viral/análisis , ARN Viral/genética , SARS-CoV-2/clasificación , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación , Análisis de Secuencia de ARN , Aguas Residuales/virología
5.
Nat Cancer ; 3(6): 710-722, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35726063

RESUMEN

Lorlatinib is currently the most advanced, potent and selective anaplastic lymphoma kinase (ALK) tyrosine kinase inhibitor for the treatment of ALK-positive non-small cell lung cancer in the clinic; however, diverse compound ALK mutations driving therapy resistance emerge. Here, we determine the spectrum of lorlatinib-resistant compound ALK mutations in patients, following treatment with lorlatinib, the majority of which involve ALK G1202R or I1171N/S/T. We further identify structurally diverse lorlatinib analogs that harbor differential selective profiles against G1202R versus I1171N/S/T compound ALK mutations. Structural analysis revealed increased potency against compound mutations through improved inhibition of either G1202R or I1171N/S/T mutant kinases. Overall, we propose a classification of heterogenous ALK compound mutations enabling the development of distinct therapeutic strategies for precision targeting following sequential tyrosine kinase inhibitors.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Aminopiridinas , Quinasa de Linfoma Anaplásico/genética , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Resistencia a Antineoplásicos/genética , Humanos , Lactamas , Lactamas Macrocíclicas/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Mutación , Inhibidores de Proteínas Quinasas/farmacología , Pirazoles
6.
medRxiv ; 2022 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-35411350

RESUMEN

As SARS-CoV-2 continues to spread and evolve, detecting emerging variants early is critical for public health interventions. Inferring lineage prevalence by clinical testing is infeasible at scale, especially in areas with limited resources, participation, or testing/sequencing capacity, which can also introduce biases. SARS-CoV-2 RNA concentration in wastewater successfully tracks regional infection dynamics and provides less biased abundance estimates than clinical testing. Tracking virus genomic sequences in wastewater would improve community prevalence estimates and detect emerging variants. However, two factors limit wastewater-based genomic surveillance: low-quality sequence data and inability to estimate relative lineage abundance in mixed samples. Here, we resolve these critical issues to perform a high-resolution, 295-day wastewater and clinical sequencing effort, in the controlled environment of a large university campus and the broader context of the surrounding county. We develop and deploy improved virus concentration protocols and deconvolution software that fully resolve multiple virus strains from wastewater. We detect emerging variants of concern up to 14 days earlier in wastewater samples, and identify multiple instances of virus spread not captured by clinical genomic surveillance. Our study provides a scalable solution for wastewater genomic surveillance that allows early detection of SARS-CoV-2 variants and identification of cryptic transmission.

7.
Cancer Cell ; 40(1): 23-25, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-35016028

RESUMEN

Identification of targetable fusions as oncogenic drivers in non-small cell lung cancer has transformed its diagnostic and therapeutic paradigm. In a recent article in Nature, Izumi et al. report the discovery of CLIP1-LTK fusion as a novel oncogenic driver in lung cancer, targetable using the ALK tyrosine kinase inhibitor lorlatinib.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Quinasa de Linfoma Anaplásico/genética , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Fusión Génica , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Tirosina Quinasas Receptoras/genética
8.
Gerontol Geriatr Med ; 7: 2333721421999313, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33786339

RESUMEN

Typical presenting symptoms of COVID-19 have been reported to be common in older adults. Current guidelines by the World Health Organization (WHO) and Centers for Disease Control (CDC) for testing and diagnosis are based on the presence of these typical symptoms. Several older adults seen at our hospital have presented atypically with symptoms such as delirium, falls, increasing the need for attention to diagnostic protocols since this has significant implications for early detection and patient outcomes, infection control and promotion of safety among healthcare providers. With the increased risk of fatality among older adults with COVID-19, appropriate diagnostic protocols are needed to ensure early diagnosis and management. Recognizing these atypical presentations in nursing homes would also facilitate early screening and cohorting in these congregate living facilities where older adults have had disproportionately high morbidity and mortality rates. We present two patients who presented with delirium and falls, found to have COVID-19 infection.

9.
Clin Cancer Res ; 27(10): 2899-2909, 2021 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-33685866

RESUMEN

PURPOSE: Current standard initial therapy for advanced, ROS proto-oncogene 1, receptor tyrosine kinase fusion (ROS1)-positive (ROS1+) non-small cell lung cancer (NSCLC) is crizotinib or entrectinib. Lorlatinib, a next-generation anaplastic lymphoma kinase/ROS1 inhibitor, recently demonstrated efficacy in ROS1+ NSCLC, including in crizotinib-pretreated patients. However, mechanisms of lorlatinib resistance in ROS1+ disease remain poorly understood. Here, we assessed mechanisms of resistance to crizotinib and lorlatinib. EXPERIMENTAL DESIGN: Biopsies from patients with ROS1 + NSCLC progressing on crizotinib or lorlatinib were profiled by genetic sequencing. RESULTS: From 55 patients, 47 post-crizotinib and 32 post-lorlatinib biopsies were assessed. Among 42 post-crizotinib and 28 post-lorlatinib biopsies analyzed at distinct timepoints, ROS1 mutations were identified in 38% and 46%, respectively. ROS1 G2032R was the most commonly occurring mutation in approximately one third of cases. Additional ROS1 mutations included D2033N (2.4%) and S1986F (2.4%) post-crizotinib and L2086F (3.6%), G2032R/L2086F (3.6%), G2032R/S1986F/L2086F (3.6%), and S1986F/L2000V (3.6%) post-lorlatinib. Structural modeling predicted ROS1L2086F causes steric interference to lorlatinib, crizotinib, and entrectinib, while it may accommodate cabozantinib. In Ba/F3 models, ROS1L2086F, ROS1G2032R/L2086F, and ROS1S1986F/G2032R/L2086F were refractory to lorlatinib but sensitive to cabozantinib. A patient with disease progression on crizotinib and lorlatinib and ROS1 L2086F received cabozantinib for nearly 11 months with disease control. Among lorlatinib-resistant biopsies, we also identified MET amplification (4%), KRAS G12C (4%), KRAS amplification (4%), NRAS mutation (4%), and MAP2K1 mutation (4%). CONCLUSIONS: ROS1 mutations mediate resistance to crizotinib and lorlatinib in more than one third of cases, underscoring the importance of developing next-generation ROS1 inhibitors with potency against these mutations, including G2032R and L2086F. Continued efforts are needed to elucidate ROS1-independent resistance mechanisms.


Asunto(s)
Aminopiridinas/farmacología , Crizotinib/farmacología , Resistencia a Antineoplásicos/genética , Lactamas/farmacología , Neoplasias Pulmonares/genética , Proteínas de Fusión Oncogénica/genética , Proteínas Tirosina Quinasas/genética , Proteínas Proto-Oncogénicas/genética , Pirazoles/farmacología , Adulto , Anciano , Anciano de 80 o más Años , Alelos , Sustitución de Aminoácidos , Aminopiridinas/química , Aminopiridinas/uso terapéutico , Antígenos de Diferenciación de Linfocitos B/genética , Biopsia , Línea Celular Tumoral , Crizotinib/química , Crizotinib/uso terapéutico , Femenino , Antígenos de Histocompatibilidad Clase II/genética , Humanos , Lactamas/química , Lactamas/uso terapéutico , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/tratamiento farmacológico , Masculino , Persona de Mediana Edad , Modelos Moleculares , Mutación , Proteínas de Fusión Oncogénica/química , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Tirosina Quinasas/química , Proteínas Proto-Oncogénicas/química , Pirazoles/química , Pirazoles/uso terapéutico , Relación Estructura-Actividad , Adulto Joven
10.
J Biol Chem ; 294(23): 9029-9036, 2019 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-31018963

RESUMEN

Hematopoietic progenitor kinase 1 (HPK1 or MAP4K1) is a Ser/Thr kinase that operates via the c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK) signaling pathways to dampen the T-cell response and antitumor immunity. Accordingly, selective HPK1 inhibition is considered a means to enhance antitumor immunity. Sunitinib, a multi-receptor tyrosine kinase (RTK) inhibitor approved for the management of gastrointestinal stromal tumors (GISTs), renal cell carcinoma (RCC), and pancreatic cancer, has been reported to inhibit HPK1 in vitro In this report, we describe the crystal structures of the native HPK1 kinase domain in both nonphosphorylated and doubly phosphorylated states, in addition to a double phosphomimetic mutant (T165E,S171E), each complexed with sunitinib at 2.17-3.00-Å resolutions. The native nonphosphorylated cocrystal structure revealed an inactive dimer in which the activation loop of each monomer partially occupies the ATP- and substrate-binding sites of the partner monomer. In contrast, the structure of the protein with a doubly phosphorylated activation loop exhibited an active kinase conformation with a greatly reduced monomer-monomer interface. Conversely, the phosphomimetic mutant cocrystal structure disclosed an alternative arrangement in which the activation loops are in an extended domain-swapped configuration. These structural results indicate that HPK1 is a highly dynamic kinase that undergoes trans-regulation via dimer formation and extensive intramolecular and intermolecular remodeling of the activation segment.


Asunto(s)
Proteínas Serina-Treonina Quinasas/metabolismo , Sunitinib/metabolismo , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Dimerización , Humanos , Interleucina-2/metabolismo , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Fosforilación , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/genética , Estructura Terciaria de Proteína , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Sunitinib/química , Sunitinib/farmacología , Linfocitos T/citología , Linfocitos T/efectos de los fármacos , Linfocitos T/metabolismo
11.
Artículo en Inglés | MEDLINE | ID: mdl-30246054

RESUMEN

This paper describes an operational evaluation of the US Environmental Protection Agency's (EPA) Air Pollution Exposure Model (APEX). APEX simulations for a multipollutant ambient air mixture, i.e. ozone (O3), carbon monoxide (CO), and particulate matter 2.5 microns in diameter or less (PM2.5), were performed for two seasons in three study areas in central Los Angeles. APEX predicted microenvironmental concentrations were compared with concentrations of these three pollutants monitored in the Exposure Classification Project (ECP) study during the same periods. The ECP was designed expressly for evaluating exposure models and measured concentrations inside and outside 40 microenvironments. This evaluation study identifies important uncertainties in APEX inputs and model predictions useful for guiding further exposure model input data and algorithm development efforts. This paper also presents summaries of the concentrations in the different microenvironments.

12.
ACS Med Chem Lett ; 9(9): 872-877, 2018 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-30258533

RESUMEN

Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase that can become oncogenic by activating mutations or overexpression. Full kinetic characterization of both phosphorylated and nonphosphorylated wildtype and mutant ALK kinase domain was done. Our structure-based drug design programs directed at ALK allowed us to interrogate whether X-ray crystallography data could be used to support the hypothesis that activation of ALK by mutation occurs due to increased protein dynamics. Crystallographic B-factors were converted to normalized B-factors, which allowed analysis of wildtype ALK, ALK-C1156Y, and ALK-L1196M. This data suggests that mobility of the P-loop, αC-helix, and activation loop (A-loop) may be important in catalytic activity increases, with or without phosphorylation. Both molecular dynamics simulations and hydrogen-deuterium exchange experimental data corroborated the normalized B-factors data.

13.
ACS Med Chem Lett ; 9(9): 878-883, 2018 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-30258534

RESUMEN

Structure-based drug design (SBDD) is commonly leveraged in rational drug design. Usually, ligand and binding site atomic coordinates from crystallographic data are exploited to optimize potency and selectivity. In addition to traditional, static views of proteins and ligands, we propose using normalized B-factors to study protein dynamics as a part of the drug optimization process. A retrospective case study of crizotinib and lorlatinib bound to both c-ros oncogene 1 kinase (ROS1) and anaplastic lymphoma kinase (ALK) L1196M related normalized B-factors to differences in binding affinity. This analysis showed that ligand binding can have protein-stabilizing effects that start near the ligand but propagate through nearby residues and structural waters to more distal motifs. The potential opportunities for analyzing normalized B-factors in SBDD are also discussed.

14.
Cancer Discov ; 8(6): 714-729, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29650534

RESUMEN

The cornerstone of treatment for advanced ALK-positive lung cancer is sequential therapy with increasingly potent and selective ALK inhibitors. The third-generation ALK inhibitor lorlatinib has demonstrated clinical activity in patients who failed previous ALK inhibitors. To define the spectrum of ALK mutations that confer lorlatinib resistance, we performed accelerated mutagenesis screening of Ba/F3 cells expressing EML4-ALK. Under comparable conditions, N-ethyl-N-nitrosourea (ENU) mutagenesis generated numerous crizotinib-resistant but no lorlatinib-resistant clones harboring single ALK mutations. In similar screens with EML4-ALK containing single ALK resistance mutations, numerous lorlatinib-resistant clones emerged harboring compound ALK mutations. To determine the clinical relevance of these mutations, we analyzed repeat biopsies from lorlatinib-resistant patients. Seven of 20 samples (35%) harbored compound ALK mutations, including two identified in the ENU screen. Whole-exome sequencing in three cases confirmed the stepwise accumulation of ALK mutations during sequential treatment. These results suggest that sequential ALK inhibitors can foster the emergence of compound ALK mutations, identification of which is critical to informing drug design and developing effective therapeutic strategies.Significance: Treatment with sequential first-, second-, and third-generation ALK inhibitors can select for compound ALK mutations that confer high-level resistance to ALK-targeted therapies. A more efficacious long-term strategy may be up-front treatment with a third-generation ALK inhibitor to prevent the emergence of on-target resistance. Cancer Discov; 8(6); 714-29. ©2018 AACR.This article is highlighted in the In This Issue feature, p. 663.


Asunto(s)
Quinasa de Linfoma Anaplásico/genética , Resistencia a Antineoplásicos , Lactamas Macrocíclicas/administración & dosificación , Neoplasias Pulmonares/genética , Mutación , Aminopiridinas , Animales , Línea Celular Tumoral , Crizotinib/administración & dosificación , Crizotinib/farmacología , Etilnitrosourea/efectos adversos , Femenino , Humanos , Lactamas , Lactamas Macrocíclicas/farmacología , Neoplasias Pulmonares/inducido químicamente , Neoplasias Pulmonares/tratamiento farmacológico , Ratones , Proteínas de Fusión Oncogénica/genética , Inhibidores de Proteínas Quinasas/administración & dosificación , Inhibidores de Proteínas Quinasas/farmacología , Pirazoles , Secuenciación del Exoma , Ensayos Antitumor por Modelo de Xenoinjerto
15.
J Med Chem ; 61(15): 6401-6420, 2018 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-29589935

RESUMEN

Lipophilic efficiency (LipE) is an important metric that has been increasingly applied in drug discovery medicinal chemistry lead optimization programs. In this Perspective, using literature drug discovery examples, we discuss the concept of rigorously applying LipE to guide medicinal chemistry lead optimization toward drug candidates with potential for superior in vivo efficacy and safety, especially when guided by physiochemical property-based optimization (PPBO). Also highlighted are examples of small structural modifications such as addition of single atoms, small functional groups, and cyclization that produce large increases in LipE. Understanding the factors that may contribute to LipE changes through analysis of ligand-protein crystal structures and using structure-based drug design (SBDD) to increase LipE by design is also discussed. Herein we advocate for use of LipE analysis coupled with PPBO and SBDD as an efficient mechanism for drug design.


Asunto(s)
Diseño de Fármacos , Interacciones Hidrofóbicas e Hidrofílicas , Animales , Ciclización , Humanos , Relación Estructura-Actividad
16.
J Biol Chem ; 292(38): 15705-15716, 2017 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-28724631

RESUMEN

The receptor tyrosine kinase family consisting of Tyro3, Axl, and Mer (TAM) is one of the most recently identified receptor tyrosine kinase families. TAM receptors are up-regulated postnatally and maintained at high levels in adults. They all play an important role in immunity, but Axl has also been implicated in cancer and therefore is a target in the discovery and development of novel therapeutics. However, of the three members of the TAM family, the Axl kinase domain is the only one that has so far eluded structure determination. To this end, using differential scanning fluorimetry and hydrogen-deuterium exchange mass spectrometry, we show here that a lower stability and greater dynamic nature of the Axl kinase domain may account for its poor crystallizability. We present the first structural characterization of the Axl kinase domain in complex with a small-molecule macrocyclic inhibitor. The Axl crystal structure revealed two distinct conformational states of the enzyme, providing a first glimpse of what an active TAM receptor kinase may look like and suggesting a potential role for the juxtamembrane region in enzyme activity. We noted that the ATP/inhibitor-binding sites of the TAM members closely resemble each other, posing a challenge for the design of a selective inhibitor. We propose that the differences in the conformational dynamics among the TAM family members could potentially be exploited to achieve inhibitor selectivity for targeted receptors.


Asunto(s)
Compuestos Macrocíclicos/metabolismo , Inhibidores de Proteínas Quinasas/metabolismo , Proteínas Proto-Oncogénicas/química , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Tirosina Quinasas Receptoras/química , Proteínas Tirosina Quinasas Receptoras/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Membrana Celular/enzimología , Diseño de Fármacos , Estabilidad de Enzimas , Humanos , Ligandos , Compuestos Macrocíclicos/farmacología , Modelos Moleculares , Fosforilación , Unión Proteica , Dominios Proteicos , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Proteínas Tirosina Quinasas Receptoras/antagonistas & inhibidores , Tirosina Quinasa del Receptor Axl
17.
Angew Chem Int Ed Engl ; 55(11): 3590-5, 2016 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-26880581

RESUMEN

Lorlatinib (PF-06463922) is an ALK/ROS1 inhibitor and is in clinical trials for the treatment of ALK positive or ROS1 positive NSCLC (i.e. specific subsets of NSCLC). One of the laboratory objectives for this molecule indicated that it would be desirable to advance a molecule which was CNS penetrant in order to treat brain metastases. From this perspective, a macrocyclic template was attractive for a number of reasons. In particular, this template reduces the number of rotatable bonds, provides the potential to shield polar surface area and reinforces binding through a restricted conformation. All of these features led to better permeability for the molecules of interest and thus increased the chance for better blood brain barrier penetration. With a CNS penetrant molecule, kinase selectivity is a key consideration particularly with regard to proteins such as TrkB, which are believed to influence cognitive function. Removal of the chiral benzylic methyl substituent from lorlatinib was perceived as not only a means to simplify synthetic complexity, but also as a strategy to further truncate the molecule of interest. Examination of the NMR of the desmethyl analogues revealed that the compound existed as a mixture of atropisomers, which proved separable by chiral SFC. The individual atropisomers were evaluated through a series of in vitro assays, and shown to have a favorable selectivity profile when compared to lorlatinib. The challenge to develop such a molecule lies in the rate at which the atropisomers interchange dictated by the energy barrier required to do this. Here, we describe the synthesis of the desmethyl macrocycles, conformational studies on the atropisomers, and the kinetics of the interconversion. In addition, the corresponding conformational studies on lorlatinib are reported providing a hypothesis for why a single diastereomer is observed when the chiral benzylic methyl group is introduced.


Asunto(s)
Lactamas Macrocíclicas/farmacología , Proteínas Tirosina Quinasas Receptoras/antagonistas & inhibidores , Aminopiridinas , Quinasa de Linfoma Anaplásico , Cinética , Lactamas , Lactamas Macrocíclicas/química , Conformación Molecular , Espectroscopía de Protones por Resonancia Magnética , Pirazoles
18.
J Med Chem ; 59(5): 2005-24, 2016 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-26756222

RESUMEN

First generation EGFR TKIs (gefitinib, erlotinib) provide significant clinical benefit for NSCLC cancer patients with oncogenic EGFR mutations. Ultimately, these patients' disease progresses, often driven by a second-site mutation in the EGFR kinase domain (T790M). Another liability of the first generation drugs is severe adverse events driven by inhibition of WT EGFR. As such, our goal was to develop a highly potent irreversible inhibitor with the largest selectivity ratio between the drug-resistant double mutants (L858R/T790M, Del/T790M) and WT EGFR. A unique approach to develop covalent inhibitors, optimization of reversible binding affinity, served as a cornerstone of this effort. PF-06459988 was discovered as a novel, third generation irreversible inhibitor, which demonstrates (i) high potency and specificity to the T790M-containing double mutant EGFRs, (ii) minimal intrinsic chemical reactivity of the electrophilic warhead, (iii) greatly reduced proteome reactivity relative to earlier irreversible EGFR inhibitors, and (iv) minimal activity against WT EGFR.


Asunto(s)
Descubrimiento de Drogas , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/genética , Proteínas Mutantes/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Pirimidinas/farmacología , Pirroles/farmacología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Relación Dosis-Respuesta a Droga , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Modelos Moleculares , Estructura Molecular , Mutación , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Pirimidinas/síntesis química , Pirimidinas/química , Pirroles/síntesis química , Pirroles/química , Relación Estructura-Actividad , Células Tumorales Cultivadas
19.
N Engl J Med ; 374(1): 54-61, 2016 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-26698910

RESUMEN

In a patient who had metastatic anaplastic lymphoma kinase (ALK)-rearranged lung cancer, resistance to crizotinib developed because of a mutation in the ALK kinase domain. This mutation is predicted to result in a substitution of cysteine by tyrosine at amino acid residue 1156 (C1156Y). Her tumor did not respond to a second-generation ALK inhibitor, but it did respond to lorlatinib (PF-06463922), a third-generation inhibitor. When her tumor relapsed, sequencing of the resistant tumor revealed an ALK L1198F mutation in addition to the C1156Y mutation. The L1198F substitution confers resistance to lorlatinib through steric interference with drug binding. However, L1198F paradoxically enhances binding to crizotinib, negating the effect of C1156Y and resensitizing resistant cancers to crizotinib. The patient received crizotinib again, and her cancer-related symptoms and liver failure resolved. (Funded by Pfizer and others; ClinicalTrials.gov number, NCT01970865.).


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Resistencia a Antineoplásicos/genética , Lactamas Macrocíclicas/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Mutación , Inhibidores de Proteínas Quinasas/uso terapéutico , Pirazoles/uso terapéutico , Piridinas/uso terapéutico , Proteínas Tirosina Quinasas Receptoras/genética , Aminopiridinas , Quinasa de Linfoma Anaplásico , Sitios de Unión , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/secundario , Crizotinib , Femenino , Humanos , Lactamas , Fallo Hepático/etiología , Neoplasias Hepáticas/secundario , Neoplasias Pulmonares/genética , Persona de Mediana Edad , Estructura Molecular , Pirimidinas/uso terapéutico , Proteínas Tirosina Quinasas Receptoras/antagonistas & inhibidores , Sulfonas/uso terapéutico
20.
Int J Cell Biol ; 2015: 798936, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26689952

RESUMEN

Rapid mutations of proteins that are targeted in cancer therapy often lead to drug resistance. Often, the mutation directly affects a drug's binding site, effectively blocking binding of the drug, but these mutations can have other effects such as changing the protein turnover half-life. Utilizing SILAC MS, we measured the cellular turnover rates of an important non-small cell lung cancer target, epidermal growth factor receptor (EGFR). Wild-type (WT) EGFR, EGFR with a single activating mutant (Del 746-750 or L858R), and the drug-resistant double mutant (L858R/T790M) EGFR were analyzed. In non-small cell lung cancer cell lines, EGFR turnover rates ranged from 28 hours in A431 cells (WT) to 7.5 hours in the PC-9 cells (Del 746-750 mutant). The measurement of EGFR turnover rate in PC-9 cells dosed with irreversible inhibitors has additional complexity due to inhibitor effects on cell viability and results were reported as a range. Finally, essential amino acid recycling (K and R) was measured in different cell lines. The recycling was different in each cell line, but the overall inclusion of the effect of amino acid recycling on calculating EGFR turnover rates resulted in a 10-20% reduction in rates.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...