RESUMEN
Traditional production of industrial and therapeutic proteins by eukaryotic cells typically requires large-scale fermentation capacity. As a result, these systems are not easily portable or reusable for on-demand protein production applications. In this study, we employ Bioproduced Proteins On Demand (Bio-POD), a F127-bisurethane methacrylate hydrogel-based technique that immobilizes engineered Pichia pastoris for preservable, on-demand production and secretion of medium- and high-molecular weight proteins (in this case, SEAP, α-amylase, and anti-HER2). The gel samples containing encapsulated-yeast demonstrated sustained protein production and exhibited productivity immediately after lyophilization and rehydration. The hydrogel platform described here is the first hydrogel immobilization using a P. pastoris system to produce recombinant proteins of this breadth. These results highlight the potential of this formulation to establish a cost-effective bioprocessing strategy for on-demand protein production.
RESUMEN
The three-dimensional (3D) printing of cell-containing polymeric hydrogels creates living materials (LMs), offering a platform for developing innovative technologies in areas like biosensors and biomanufacturing. The polymer material properties of cross-linkable F127-bis-urethane methacrylate (F127-BUM) allow reproducible 3D printing and stability in physiological conditions, making it suitable for fabricating LMs. Though F127-BUM-based LMs permit diffusion of solute molecules like glucose and ethanol, it remains unknown whether these are permissible for oxygen, essential for respiration. To determine oxygen permissibility, we quantified dissolved oxygen consumption by the budding yeast-laden F127-BUM-based LMs. Moreover, we obtained data on cell-retaining LMs, which allowed a direct comparison between LMs and suspension cultures. We further developed a highly reliable method to isolate cells from LMs for flow cytometry analysis, cell viability evaluation, and the purification of macromolecules. We found oxygen consumption heavily impaired inside LMs, indicating that yeast metabolism relies primarily on fermentation instead of respiration. Applying this finding to brewing, we observed a higher (3.7%) ethanol production using LMs than the traditional brewing process, indicating improved fermentation. Our study concludes that the present F127-BUM-based LMs are useful for microaerobic processes but developing aerobic bioprocesses will require further research.
Asunto(s)
Hidrogeles , Impresión Tridimensional , Etanol , Fermentación , Metacrilatos , Oxígeno , PolímerosRESUMEN
Additive manufacturing allows three-dimensional printing of polymeric materials together with cells, creating living materials for applications in biomedical research and biotechnology. However, an understanding of the cellular phenotype within living materials is lacking, which is a key limitation for their wider application. Herein, we present an approach to characterize the cellular phenotype within living materials. We immobilized the budding yeast Saccharomyces cerevisiae in three different photo-cross-linkable triblock polymeric hydrogels containing F127-bis-urethane methacrylate, F127-dimethacrylate, or poly(alkyl glycidyl ether)-dimethacrylate. Using optical and scanning electron microscopy, we showed that hydrogels based on these polymers were stable under physiological conditions, but yeast colonies showed differences in the interaction within the living materials. We found that the physical confinement, imparted by compositional and structural properties of the hydrogels, impacted the cellular phenotype by reducing the size of cells in living materials compared with suspension cells. These properties also contributed to the differences in immobilization patterns, growth of colonies, and colony coatings. We observed that a composition-dependent degradation of polymers was likely possible by cells residing in the living materials. In conclusion, our investigation highlights the need for a holistic understanding of the cellular response within hydrogels to facilitate the synthesis of application-specific polymers and the design of advanced living materials in the future.
RESUMEN
BACKGROUND: Resveratrol is a plant secondary metabolite with diverse, potential health-promoting benefits. Due to its nutraceutical merit, bioproduction of resveratrol via microbial engineering has gained increasing attention and provides an alternative to unsustainable chemical synthesis and straight extraction from plants. However, many studies on microbial resveratrol production were implemented with the addition of water-insoluble phenylalanine or tyrosine-based precursors to the medium, limiting in the sustainable development of bioproduction. RESULTS: Here we present a novel coculture platform where two distinct metabolic background species were modularly engineered for the combined total and de novo biosynthesis of resveratrol. In this scenario, the upstream Escherichia coli module is capable of excreting p-coumaric acid into the surrounding culture media through constitutive overexpression of codon-optimized tyrosine ammonia lyase from Trichosporon cutaneum (TAL), feedback-inhibition-resistant 3-deoxy-d-arabinoheptulosonate-7-phosphate synthase (aroGfbr) and chorismate mutase/prephenate dehydrogenase (tyrAfbr) in a transcriptional regulator tyrR knockout strain. Next, to enhance the precursor malonyl-CoA supply, an inactivation-resistant version of acetyl-CoA carboxylase (ACC1S659A,S1157A) was introduced into the downstream Saccharomyces cerevisiae module constitutively expressing codon-optimized 4-coumarate-CoA ligase from Arabidopsis thaliana (4CL) and resveratrol synthase from Vitis vinifera (STS), and thus further improve the conversion of p-coumaric acid-to-resveratrol. Upon optimization of the initial inoculation ratio of two populations, fermentation temperature, and culture time, this co-culture system yielded 28.5 mg/L resveratrol from glucose in flasks. In further optimization by increasing initial net cells density at a test tube scale, a final resveratrol titer of 36 mg/L was achieved. CONCLUSIONS: This is first study that demonstrates the use of a synthetic E. coli-S. cerevisiae consortium for de novo resveratrol biosynthesis, which highlights its potential for production of other p-coumaric-acid or resveratrol derived biochemicals.
Asunto(s)
Técnicas de Cocultivo/métodos , Ácidos Cumáricos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Resveratrol/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Acetil-CoA Carboxilasa/genética , Acetil-CoA Carboxilasa/metabolismo , Aciltransferasas/genética , Amoníaco-Liasas/genética , Amoníaco-Liasas/metabolismo , Arabidopsis/enzimología , Basidiomycota/enzimología , Corismato Mutasa/genética , Corismato Mutasa/metabolismo , Codón/genética , Coenzima A Ligasas/genética , Coenzima A Ligasas/metabolismo , Escherichia coli/crecimiento & desarrollo , Fermentación , Genes Fúngicos , Genes de Plantas , Ingeniería Genética , Microbiología Industrial , Malonil Coenzima A/metabolismo , Ingeniería Metabólica , Redes y Vías Metabólicas/genética , Prefenato Deshidrogenasa/genética , Prefenato Deshidrogenasa/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Tirosina/metabolismo , Vitis/enzimologíaRESUMEN
Living materials are created through the embedding of live, whole cells into a matrix that can house and sustain the viability of the encapsulated cells. Through the immobilization of these cells, their bioactivity can be harnessed for applications such as bioreactors for the production of high-value chemicals. While the interest in living materials is growing, many existing materials lack robust structure and are difficult to pattern. Furthermore, many living materials employ only one type of microorganism, or microbial consortia with little control over the arrangement of the various cell types. In this work, a Pluronic F127-based hydrogel system is characterized for the encapsulation of algae, yeast, and bacteria to create living materials. This hydrogel system is also demonstrated to be an excellent material for additive manufacturing in the form of direct write 3D-printing to spatially arrange the cells within a single printed construct. These living materials allow for the development of incredibly complex, immobilized consortia, and the results detailed herein further enhance the understanding of how cells behave within living material matrices. The utilization of these materials allows for interesting applications of multikingdom microbial cultures in immobilized bioreactor or biosensing technologies.
Asunto(s)
Hidrogeles/química , Impresión Tridimensional , Supervivencia Celular , Proteínas Fluorescentes Verdes/metabolismo , Polietilenos/química , Polipropilenos/química , Saccharomyces cerevisiae/metabolismoRESUMEN
Most mono- and co-culture bioprocess applications rely on large-scale suspension fermentation technologies that are not easily portable, reusable, or suitable for on-demand production. Here, we describe a hydrogel system for harnessing the bioactivity of embedded microbes for on-demand small molecule and peptide production in microbial mono-culture and consortia. This platform bypasses the challenges of engineering a multi-organism consortia by utilizing a temperature-responsive, shear-thinning hydrogel to compartmentalize organisms into polymeric hydrogels that control the final consortium composition and dynamics without the need for synthetic control of mutualism. We demonstrate that these hydrogels provide protection from preservation techniques (including lyophilization) and can sustain metabolic function for over 1 year of repeated use. This approach was utilized for the production of four chemical compounds, a peptide antibiotic, and carbohydrate catabolism by using either mono-cultures or co-cultures. The printed microbe-laden hydrogel constructs' efficiency in repeated production phases, both pre- and post-preservation, outperforms liquid culture.
Asunto(s)
Escherichia coli/química , Hidrogeles/química , Preservación Biológica/instrumentación , Saccharomyces cerevisiae/química , Técnicas de Cocultivo , Escherichia coli/crecimiento & desarrollo , Preservación Biológica/métodos , Saccharomyces cerevisiae/crecimiento & desarrolloRESUMEN
Herein, we describe a method to produce yeast-laden hydrogel inks for the direct-write 3D printing of cuboidal lattices for immobilized whole-cell catalysis. A poly(alkyl glycidyl ether)-based triblock copolymer was designed to have three important features for this application: (1) a temperature response, which allowed for facile processing of the material; (2) a shear response, which facilitated the extrusion of the material through a nozzle; and (3) UV light induced polymerization, which enabled the post-extrusion chemical crosslinking of network chains, and the fabrication of robust printed objects. These three key stimuli responses were confirmed via rheometrical characterization. A genetically-engineered yeast strain with an upregulated α-factor production pathway was incorporated into the hydrogel ink and 3D printed. The immobilized yeast cells exhibited adequate viability of 87.5% within the hydrogel. The production of the upregulated α-factor was detected using a detecting yeast strain and quantified at 268 nM (s = 34.6 nM) over 72 h. The reusability of these bioreactors was demonstrated via immersion of the yeast-laden hydrogel lattice in fresh SC media and confirmed by the detection of similar amounts of upregulated α-factor at 259 nM (s = 45.1 nM). These yeast-laden materials represent an attractive opportunity for whole-cell catalysis of other high-value products in a sustainable and continuous manner.
Asunto(s)
Bioimpresión/métodos , Compuestos Epoxi/química , Hidrogeles/química , Impresión Tridimensional , Saccharomyces cerevisiae/citología , Alquilación , Reactores Biológicos/microbiología , Células Inmovilizadas/citología , Microbiología Industrial/métodos , PolimerizacionRESUMEN
Living materials, which are composites of living cells residing in a polymeric matrix, are designed to utilize the innate functionalities of the cells to address a broad range of applications such as fermentation and biosensing. Herein, we demonstrate the additive manufacturing of catalytically active living materials (AMCALM) for continuous fermentation. A multi-stimuli-responsive yeast-laden hydrogel ink, based on F127-dimethacrylate, was developed and printed using a direct-write 3D printer. The reversible stimuli-responsive behaviors of the polymer hydrogel inks to temperature and pressure are critical, as they enabled the facile incorporation of yeast cells and subsequent fabrication of 3D lattice constructs. Subsequent photo-cross-linking of the printed polymer hydrogel afforded a robust elastic material. These yeast-laden living materials were metabolically active in the fermentation of glucose into ethanol for 2 weeks in a continuous batch process without significant reduction in efficiency (â¼90% yield of ethanol). This cell immobilization platform may potentially be applicable toward other genetically modified yeast strains to produce other high-value chemicals in a continuous biofermentation process.