Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Soft Matter ; 20(18): 3732-3741, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38647097

RESUMEN

Superparamagnetic iron oxide nanoparticles (SPIONs) have attracted significant attention because of their nanoscale magnetic properties. SPION aggregates may afford emergent properties, resulting from dipole-dipole interactions between neighbors. Such aggregates can display internal order, with high packing fractions (>20%), and can be stabilized with block co-polymers (BCPs), permitting design of tunable composites for potential nanomedicine, data storage, and electronic sensing applications. Despite the routine use of magnetic fields for aggregate actuation, the impact of those fields on polymer structure, SPION ordering, and magnetic properties is not fully understood. Here, we report that external magnetic fields can induce ordering in SPION aggregates that affect their structure, inter-SPION distance, magnetic properties, and composite Tg. SPION aggregates were synthesized in the presence or absence of magnetic fields or exposed to magnetic fields post-synthesis. They were characterized using transmission electron microscopy (TEM), small angle X-ray scattering (SAXS), superconducting quantum interference device (SQUID) analysis, and differential scanning calorimetry (DSC). SPION aggregate properties depended on the timing of field application. Magnetic field application during synthesis encouraged preservation of SPION chain aggregates stabilized by polymer coatings even after removal of the field, whereas post synthesis application triggered subtle internal reordering, as indicated by increased blocking temperature (TB), that was not observed via SAXS or TEM. These results suggest that magnetic fields are a simple, yet powerful tool to tailor the structure, ordering, and magnetic properties of polymer-stabilized SPION nanocomposites.

2.
Nano Lett ; 24(10): 3097-3103, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38417053

RESUMEN

To date, studies on the thermodynamic and kinetic processes that underlie biological function and nanomachine actuation in biological- and biology-inspired molecular constructs have primarily focused on photothermal heating of ensemble systems, highlighting the need for probes that are localized within the molecular construct and capable of resolving single-molecule response. Here we present an experimental demonstration of wavelength-selective, localized heating at the single-molecule level using the surface plasmon resonance of a 15 nm gold nanoparticle (AuNP). Our approach is compatible with force-spectroscopy measurements and can be applied to studies of the single-molecule thermodynamic properties of DNA origami nanomachines as well as biomolecular complexes. We further demonstrate wavelength selectivity and establish the temperature dependence of the reaction coordinate for base-pair disruption in the shear-rupture geometry, demonstrating the utility and flexibility of this approach for both fundamental studies of local (nanometer-scale) temperature gradients and rapid and multiplexed nanomachine actuation.


Asunto(s)
Oro , Nanopartículas del Metal , Oro/química , Pinzas Ópticas , Calefacción , Nanopartículas del Metal/química , ADN/química
3.
Adv Sci (Weinh) ; 11(14): e2310032, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38279583

RESUMEN

A cavity-magnonic system composed of a superconducting microwave resonator coupled to a magnon mode hosted by the organic-based ferrimagnet vanadium tetracyanoethylene (V[TCNE]x) is demonstrated. This work is motivated by the challenge of scalably integrating a low-damping magnetic system with planar superconducting circuits. V[TCNE]x has ultra-low intrinsic damping, can be grown at low processing temperatures on arbitrary substrates, and can be patterned via electron beam lithography. The devices operate in the strong coupling regime, with a cooperativity exceeding 1000 for coupling between the Kittel mode and the resonator mode at T≈0.4 K, suitable for scalable quantum circuit integration. Higher-order magnon modes are also observed with much narrower linewidths than the Kittel mode. This work paves the way for high-cooperativity hybrid quantum devices in which magnonic circuits can be designed and fabricated as easily as electrical wires.

4.
ACS Cent Sci ; 9(4): 777-786, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37122461

RESUMEN

Materials that simultaneously exhibit permanent porosity and high-temperature magnetic order could lead to advances in fundamental physics and numerous emerging technologies. Herein, we show that the archetypal molecule-based magnet and magnonic material V(TCNE)2 (TCNE = tetracyanoethylene) can be desolvated to generate a room-temperature microporous magnet. The solution-phase reaction of V(CO)6 with TCNE yields V(TCNE)2·0.95CH2Cl2, for which a characteristic temperature of T* = 646 K is estimated from a Bloch fit to variable-temperature magnetization data. Removal of the solvent under reduced pressure affords the activated compound V(TCNE)2, which exhibits a T* value of 590 K and permanent microporosity (Langmuir surface area of 850 m2/g). The porous structure of V(TCNE)2 is accessible to the small gas molecules H2, N2, O2, CO2, ethane, and ethylene. While V(TCNE)2 exhibits thermally activated electron transfer with O2, all the other studied gases engage in physisorption. The T* value of V(TCNE)2 is slightly modulated upon adsorption of H2 (T* = 583 K) or CO2 (T* = 596 K), while it decreases more significantly upon ethylene insertion (T* = 459 K). These results provide an initial demonstration of microporosity in a room-temperature magnet and highlight the possibility of further incorporation of small-molecule guests, potentially even molecular qubits, toward future applications.

5.
RSC Adv ; 8(63): 36223-36232, 2018 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-35558484

RESUMEN

Here we present the synthesis and characterization of a hybrid vanadium-organic coordination polymer with robust magnetic order, a Curie temperature T C of ∼110 K, a coercive field of ∼5 Oe at 5 K, and a maximum mass magnetization of about half that of the benchmark ferrimagnetic vanadium(tetracyanoethylene)∼2 (V·(TCNE)∼2). This material was prepared using a new tetracyano-substituted quinoidal organic small molecule 7 based on a tricyclic heterocycle 4-hexyl-4H-pyrrolo[2,3-d:5,4-d']bis(thiazole) (C6-PBTz). Single crystal X-ray diffraction of the 2,6-diiodo derivative of the parent C6-PBTz, showed a disordered hexyl chain and a nearly linear arrangement of the substituents in positions 2 and 6 of the tricyclic core. Density functional theory (DFT) calculations indicate that C6-PBTz-based ligand 7 is a strong acceptor with an electron affinity larger than that of TCNE and several other ligands previously used in molecular magnets. This effect is due in part to the electron-deficient thiazole rings and extended delocalization of the frontier molecular orbitals. The ligand detailed in this study, a representative example of fused heterocycle aromatic cores with extended π conjugation, introduces new opportunities for structure-magnetic-property correlation studies where the chemistry of the tricyclic heterocycles can modulate the electronic properties and the substituent at the central N-position can vary the spatial characteristics of the magnetic polymer.

6.
Biophys J ; 110(9): 2044-52, 2016 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-27166812

RESUMEN

Electron paramagnetic resonance (EPR), an established and powerful methodology for studying atomic-scale biomolecular structure and dynamics, typically requires in excess of 10(12) labeled biomolecules. Single-molecule measurements provide improved insights into heterogeneous behaviors that can be masked in ensemble measurements and are often essential for illuminating the molecular mechanisms behind the function of a biomolecule. Here, we report EPR measurements of a single labeled biomolecule. We selectively label an individual double-stranded DNA molecule with a single nanodiamond containing nitrogen-vacancy centers, and optically detect the paramagnetic resonance of nitrogen-vacancy spins in the nanodiamond probe. Analysis of the spectrum reveals that the nanodiamond probe has complete rotational freedom and that the characteristic timescale for reorientation of the nanodiamond probe is slow compared with the transverse spin relaxation time. This demonstration of EPR spectroscopy of a single nanodiamond-labeled DNA provides the foundation for the development of single-molecule magnetic resonance studies of complex biomolecular systems.


Asunto(s)
ADN/química , Nanodiamantes/química , Espectroscopía de Resonancia por Spin del Electrón , Modelos Moleculares , Conformación Molecular
7.
J Phys Condens Matter ; 28(3): 034001, 2016 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-26703817

RESUMEN

The synthesis of germanane (GeH) has opened the door for covalently functionalizable 2D materials in electronics. Herein, we demonstrate that GeH can be electronically doped by incorporating stoichiometric equivalents of phosphorus dopant atoms into the CaGe2 precursor. The electronic properties of these doped materials show significant atmospheric sensitivity, and we observe a reduction in resistance by up to three orders of magnitude when doped samples are measured in water-containing atmospheres. This variation in resistance is a result of water activation of the phosphorus dopants. Transport measurements in different contact geometries show a significant anisotropy between in-plane and out-of-plane resistances, with a much larger out-of-plane resistance. These measurements along with finite element modeling results predict that the current distribution in top-contacted crystals is restricted to only the topmost, water activated crystal layers. Taken together, these results pave the way for future electronic and optoelectronic applications utilizing group IV graphane analogues.

8.
J Vis Exp ; (101): e52891, 2015 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-26168285

RESUMEN

Recent progress in the field of organic materials has yielded devices such as organic light emitting diodes (OLEDs) which have advantages not found in traditional materials, including low cost and mechanical flexibility. In a similar vein, it would be advantageous to expand the use of organics into high frequency electronics and spin-based electronics. This work presents a synthetic process for the growth of thin films of the room temperature organic ferrimagnet, vanadium tetracyanoethylene (V[TCNE]x, x~2) by low temperature chemical vapor deposition (CVD). The thin film is grown at <60 °C, and can accommodate a wide variety of substrates including, but not limited to, silicon, glass, Teflon and flexible substrates. The conformal deposition is conducive to pre-patterned and three-dimensional structures as well. Additionally this technique can yield films with thicknesses ranging from 30 nm to several microns. Recent progress in optimization of film growth creates a film whose qualities, such as higher Curie temperature (600 K), improved magnetic homogeneity, and narrow ferromagnetic resonance line-width (1.5 G) show promise for a variety of applications in spintronics and microwave electronics.


Asunto(s)
Etilenos/química , Magnetismo/métodos , Imanes , Nitrilos/química , Compuestos de Vanadio/química , Frío , Electrónica/instrumentación , Electrónica/métodos , Gases/química , Vidrio , Magnetismo/instrumentación
9.
Adv Mater ; 26(45): 7632-6, 2014 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-25327816

RESUMEN

The preparation and characterization of a new thin-film organic-based magnet V[MeTCEC]x (V = vanadium; MeTCEC = methyl tricaynoethylenecarboxylate) via low-temperature chemical vapor deposition (50 °C) is reported. These thin films exhibit room-temperature magnetic ordering and semiconducting behavior, demonstrating the ability of tuning their magnetic, and potentially spintronic, functionality via chemical modification of the organic ligand.

10.
Rev Sci Instrum ; 85(12): 123702, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25554296

RESUMEN

Understanding the complex properties of electronic and spintronic devices at the micro- and nano-scale is a topic of intense current interest as it becomes increasingly important for scientific progress and technological applications. In operando characterization of such devices by scanning probe techniques is particularly well-suited for the microscopic study of these properties. We have developed a scanning probe microscope (SPM) which is capable of both standard force imaging (atomic, magnetic, electrostatic) and simultaneous electrical transport measurements. We utilize flexible and inexpensive FPGA (field-programmable gate array) hardware and a custom software framework developed in National Instrument's LabVIEW environment to perform the various aspects of microscope operation and device measurement. The FPGA-based approach enables sensitive, real-time cantilever frequency-shift detection. Using this system, we demonstrate electrostatic force microscopy of an electrically biased graphene field-effect transistor device. The combination of SPM and electrical transport also enables imaging of the transport response to a localized perturbation provided by the scanned cantilever tip. Facilitated by the broad presence of LabVIEW in the experimental sciences and the openness of our software solution, our system permits a wide variety of combined scanning and transport measurements by providing standardized interfaces and flexible access to all aspects of a measurement (input and output signals, and processed data). Our system also enables precise control of timing (synchronization of scanning and transport operations) and implementation of sophisticated feedback protocols, and thus should be broadly interesting and useful to practitioners in the field.

11.
ACS Nano ; 7(4): 2898-926, 2013 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-23464873

RESUMEN

Graphene's success has shown that it is possible to create stable, single and few-atom-thick layers of van der Waals materials, and also that these materials can exhibit fascinating and technologically useful properties. Here we review the state-of-the-art of 2D materials beyond graphene. Initially, we will outline the different chemical classes of 2D materials and discuss the various strategies to prepare single-layer, few-layer, and multilayer assembly materials in solution, on substrates, and on the wafer scale. Additionally, we present an experimental guide for identifying and characterizing single-layer-thick materials, as well as outlining emerging techniques that yield both local and global information. We describe the differences that occur in the electronic structure between the bulk and the single layer and discuss various methods of tuning their electronic properties by manipulating the surface. Finally, we highlight the properties and advantages of single-, few-, and many-layer 2D materials in field-effect transistors, spin- and valley-tronics, thermoelectrics, and topological insulators, among many other applications.


Asunto(s)
Membranas Artificiales , Microelectrodos , Nanopartículas/química , Nanopartículas/ultraestructura , Nanotecnología/tendencias , Transistores Electrónicos , Grafito
13.
Nature ; 466(7309): 954-8, 2010 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-20725036

RESUMEN

Ferroelectric ferromagnets are exceedingly rare, fundamentally interesting multiferroic materials that could give rise to new technologies in which the low power and high speed of field-effect electronics are combined with the permanence and routability of voltage-controlled ferromagnetism. Furthermore, the properties of the few compounds that simultaneously exhibit these phenomena are insignificant in comparison with those of useful ferroelectrics or ferromagnets: their spontaneous polarizations or magnetizations are smaller by a factor of 1,000 or more. The same holds for magnetic- or electric-field-induced multiferroics. Owing to the weak properties of single-phase multiferroics, composite and multilayer approaches involving strain-coupled piezoelectric and magnetostrictive components are the closest to application today. Recently, however, a new route to ferroelectric ferromagnets was proposed by which magnetically ordered insulators that are neither ferroelectric nor ferromagnetic are transformed into ferroelectric ferromagnets using a single control parameter, strain. The system targeted, EuTiO(3), was predicted to exhibit strong ferromagnetism (spontaneous magnetization, approximately 7 Bohr magnetons per Eu) and strong ferroelectricity (spontaneous polarization, approximately 10 microC cm(-2)) simultaneously under large biaxial compressive strain. These values are orders of magnitude higher than those of any known ferroelectric ferromagnet and rival the best materials that are solely ferroelectric or ferromagnetic. Hindered by the absence of an appropriate substrate to provide the desired compression we turned to tensile strain. Here we show both experimentally and theoretically the emergence of a multiferroic state under biaxial tension with the unexpected benefit that even lower strains are required, thereby allowing thicker high-quality crystalline films. This realization of a strong ferromagnetic ferroelectric points the way to high-temperature manifestations of this spin-lattice coupling mechanism. Our work demonstrates that a single experimental parameter, strain, simultaneously controls multiple order parameters and is a viable alternative tuning parameter to composition for creating multiferroics.


Asunto(s)
Electricidad , Europio/química , Magnetismo , Óxidos/química , Titanio/química , Capacidad Eléctrica , Microscopía Electrónica de Transmisión de Rastreo , Temperatura , Difracción de Rayos X
14.
Nature ; 445(7126): 414-7, 2007 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-17251976

RESUMEN

The primary metric for gauging progress in the various semiconductor integrated circuit technologies is the spacing, or pitch, between the most closely spaced wires within a dynamic random access memory (DRAM) circuit. Modern DRAM circuits have 140 nm pitch wires and a memory cell size of 0.0408 mum(2). Improving integrated circuit technology will require that these dimensions decrease over time. However, at present a large fraction of the patterning and materials requirements that we expect to need for the construction of new integrated circuit technologies in 2013 have 'no known solution'. Promising ingredients for advances in integrated circuit technology are nanowires, molecular electronics and defect-tolerant architectures, as demonstrated by reports of single devices and small circuits. Methods of extending these approaches to large-scale, high-density circuitry are largely undeveloped. Here we describe a 160,000-bit molecular electronic memory circuit, fabricated at a density of 10(11) bits cm(-2) (pitch 33 nm; memory cell size 0.0011 microm2), that is, roughly analogous to the dimensions of a DRAM circuit projected to be available by 2020. A monolayer of bistable, [2]rotaxane molecules served as the data storage elements. Although the circuit has large numbers of defects, those defects could be readily identified through electronic testing and isolated using software coding. The working bits were then configured to form a fully functional random access memory circuit for storing and retrieving information.

15.
Faraday Discuss ; 131: 9-22; discussion 91-109, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16512361

RESUMEN

We describe our research into building integrated molecular electronics circuitry for a diverse set of functions, and with a focus on the fundamental scientific issues that surround this project. In particular, we discuss experiments aimed at understanding the function of bistable rotaxane molecular electronic switches by correlating the switching kinetics and ground state thermodynamic properties of those switches in various environments, ranging from the solution phase to a Langmuir monolayer of the switching molecules sandwiched between two electrodes. We discuss various devices, low bit-density memory circuits, and ultra-high density memory circuits that utilize the electrochemical switching characteristics of these molecules in conjunction with novel patterning methods. We also discuss interconnect schemes that are capable of bridging the micrometre to submicrometre length scales of conventional patterning approaches to the near-molecular length scales of the ultra-dense memory circuits. Finally, we discuss some of the challenges associated with fabricated ultra-dense molecular electronic integrated circuits.


Asunto(s)
Computadores Moleculares/tendencias , Electrónica/instrumentación , Electrónica/tendencias , Mecánica , Nanotecnología/instrumentación , Nanotecnología/tendencias , Procesamiento de Señales Asistido por Computador/instrumentación , Diseño de Equipo , Nanotecnología/métodos
16.
Nano Lett ; 6(3): 351-4, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16522021

RESUMEN

High density metal cross bars at 17 nm half-pitch were fabricated by nanoimprint lithography. Utilizing the superlattice nanowire pattern transfer technique, a 300-layer GaAs/AlGaAs superlattice was employed to produce an array of 150 Si nanowires (15 nm wide at 34 nm pitch) as an imprinting mold. A successful reproduction of the Si nanowire pattern was demonstrated. Furthermore, a cross-bar platinum nanowire array with a cell density of approximately 100 Gbit/cm(2) was fabricated by two consecutive imprinting processes.

17.
Science ; 310(5747): 465-8, 2005 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-16195426

RESUMEN

A demultiplexer is an electronic circuit designed to separate two or more combined signals. We report on a demultiplexer architecture for bridging from the submicrometer dimensions of lithographic patterning to the nanometer-scale dimensions that can be achieved through nanofabrication methods for the selective addressing of ultrahigh-density nanowire circuits. Order log2(N) large wires are required to address N nanowires, and the demultiplexer architecture is tolerant of low-precision manufacturing. This concept is experimentally demonstrated on submicrometer wires and on an array of 150 silicon nanowires patterned at nanowire widths of 13 nanometers and a pitch of 34 nanometers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...