Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(6)2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36982737

RESUMEN

Estrogen receptor-positive breast cancers (ER+ BCas) are the most common form of BCa and are increasing in incidence, largely due to changes in reproductive practices in recent decades. Tamoxifen is prescribed as a component of standard-of-care endocrine therapy for the treatment and prevention of ER+ BCa. However, it is poorly tolerated, leading to low uptake of the drug in the preventative setting. Alternative therapies and preventatives for ER+ BCa are needed but development is hampered due to a paucity of syngeneic ER+ preclinical mouse models that allow pre-clinical experimentation in immunocompetent mice. Two ER-positive models, J110 and SSM3, have been reported in addition to other tumour models occasionally shown to express ER (for example 4T1.2, 67NR, EO771, D2.0R and D2A1). Here, we have assessed ER expression and protein levels in seven mouse mammary tumour cell lines and their corresponding tumours, in addition to their cellular composition, tamoxifen sensitivity and molecular phenotype. By immunohistochemical assessment, SSM3 and, to a lesser extent, 67NR cells are ER+. Using flow cytometry and transcript expression we show that SSM3 cells are luminal in nature, whilst D2.0R and J110 cells are stromal/basal. The remainder are also stromal/basal in nature; displaying a stromal or basal Epcam/CD49f FACS phenotype and stromal and basal gene expression signatures are overrepresented in their transcript profile. Consistent with a luminal identity for SSM3 cells, they also show sensitivity to tamoxifen in vitro and in vivo. In conclusion, the data indicate that the SSM3 syngeneic cell line is the only definitively ER+ mouse mammary tumour cell line widely available for pre-clinical research.


Asunto(s)
Neoplasias de la Mama , Receptores de Estrógenos , Tamoxifeno , Humanos , Línea Celular Tumoral , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Animales , Ratones , Modelos Animales de Enfermedad , Receptores de Estrógenos/genética , Tamoxifeno/farmacología , Fenotipo , Inmunohistoquímica , Citometría de Flujo , Transcriptoma , Ratones de la Cepa 129 , RNA-Seq , Células Epiteliales , Glándulas Mamarias Animales/citología , Neoplasias Mamarias Experimentales/tratamiento farmacológico , Neoplasias Mamarias Experimentales/genética
2.
Oncogenesis ; 11(1): 38, 2022 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-35821197

RESUMEN

MiR-21 was identified as a gene whose expression correlated with the extent of metastasis of murine mammary tumours. Since miR-21 is recognised as being associated with poor prognosis in cancer, we investigated its contribution to mammary tumour growth and metastasis in tumours with capacity for spontaneous metastasis. Unexpectedly, we found that suppression of miR-21 activity in highly metastatic tumours resulted in regression of primary tumour growth in immunocompetent mice but did not impede growth in immunocompromised mice. Analysis of the immune infiltrate of the primary tumours at the time when the tumours started to regress revealed an influx of both CD4+ and CD8+ activated T cells and a reduction in PD-L1+ infiltrating monocytes, providing an explanation for the observed tumour regression. Loss of anti-tumour immune suppression caused by decreased miR-21 activity was confirmed by transcriptomic analysis of primary tumours. This analysis also revealed reduced expression of genes associated with cell cycle progression upon loss of miR-21 activity. A second activity of miR-21 was the promotion of metastasis as shown by the loss of metastatic capacity of miR-21 knockdown tumours established in immunocompromised mice, despite no impact on primary tumour growth. A proteomic analysis of tumour cells with altered miR-21 activity revealed deregulation of proteins known to be associated with tumour progression. The development of therapies targeting miR-21, possibly via targeted delivery to tumour cells, could be an effective therapy to combat primary tumour growth and suppress the development of metastatic disease.

3.
Cancers (Basel) ; 14(9)2022 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-35565421

RESUMEN

Inflammatory breast cancer (IBC) describes a highly aggressive form of breast cancer of diverse molecular subtypes and clonal heterogeneity across individual tumors. Accordingly, IBC is recognized by its clinical signs of inflammation, associated with expression of interleukin (IL)-6 and other inflammatory cytokines. Here, we investigate whether sub-clonal differences between expression of components of the IL-6 signaling cascade reveal a novel role for IL-6 to mediate a proliferative response in trans using two prototypical IBC cell lines. We find that SUM149 and SUM 190 cells faithfully replicate differential expression observed in a subset of human IBC specimens between IL-6, the activated form of the key downstream transcription factor STAT3, and of the HER2 receptor. Surprisingly, the high level of IL-6 produced by SUM149 cells activates STAT3 and stimulates proliferation in SUM190 cells, but not in SUM149 cells with low IL-6R expression. Importantly, SUM149 conditioned medium or co-culture with SUM149 cells induced growth of SUM190 cells, and this effect was abrogated by the IL-6R neutralizing antibody Tocilizumab. The results suggest a novel function for inter-clonal IL-6 signaling in IBC, whereby IL-6 promotes in trans proliferation of IL-6R and HER2-expressing responsive sub-clones and, therefore, may provide a vulnerability that can be exploited therapeutically by repurposing of a clinically approved antibody.

4.
Cancers (Basel) ; 13(5)2021 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-33800279

RESUMEN

Triple-negative breast cancer (TNBC) has a poor outcome compared to other breast cancer subtypes, and new therapies that target the molecular alterations driving tumor progression are needed. Annexin A1 is an abundant multi-functional Ca2+ binding and membrane-associated protein. Reported roles of Annexin A1 in breast cancer progression and metastasis are contradictory. Here, we sought to clarify the functions of Annexin A1 in the development and progression of TNBC. The association of Annexin A1 expression with patient prognosis in subtypes of TNBC was examined. Annexin A1 was stably knocked down in a panel of human and murine TNBC cell lines with high endogenous Annexin A1 expression that were then evaluated for orthotopic growth and spontaneous metastasis in vivo and for alterations in cell morphology in vitro. The impact of Annexin A1 knockdown on the expression of genes involved in mammary epithelial cell differentia tion and epithelial to mesenchymal transition was also determined. Annexin A1 mRNA levels correlated with poor patient prognosis in basal-like breast tumors and also in the basal-like 2 subset of TNBCs. Unexpectedly, loss of Annexin A1 expression had no effect on either primary tumor growth or spontaneous metastasis of MDA-MB-231_HM xenografts, but abrogated the growth rate of SUM149 orthotopic tumors. In an MMTV-PyMT driven allograft model of breast cancer, Annexin A1 depletion markedly delayed tumor formation in both immuno-competent and immuno-deficient mice and induced epithelial to mesenchymal transition and upregulation of basal markers. Finally, loss of Annexin A1 resulted in the loss of a discrete CD24+/Sca1- population containing putative tumor initiating cells. Collectively, our data demonstrate a novel cell-autonomous role for Annexin A1 in the promotion of tumor-forming capacity in a model of human breast cancer and suggest that some basal-like TNBCs may require high endogenous tumor cell Annexin A1 expression for continued growth.

5.
Int J Cancer ; 147(1): 230-243, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31957002

RESUMEN

Triple-negative breast cancer (TNBC) represents 10-20% of all human ductal adenocarcinomas and has a poor prognosis relative to other subtypes, due to the high propensity to develop distant metastases. Hence, new molecular targets for therapeutic intervention are needed for TNBC. We recently conducted a rigorous phenotypic and genomic characterization of four isogenic populations of MDA-MB-231 human triple-negative breast cancer cells that possess a range of intrinsic spontaneous metastatic capacities in vivo, ranging from nonmetastatic (MDA-MB-231_ATCC) to highly metastatic to lung, liver, spleen and spine (MDA-MB-231_HM). Gene expression profiling of primary tumours by RNA-Seq identified the fibroblast growth factor homologous factor, FGF13, as highly upregulated in aggressively metastatic MDA-MB-231_HM tumours. Clinically, higher FGF13 mRNA expression was associated with significantly worse relapse free survival in both luminal A and basal-like human breast cancers but was not associated with other clinical variables and was not upregulated in primary tumours relative to normal mammary gland. Stable FGF13 depletion restricted in vitro colony forming ability in MDA-MB-231_HM TNBC cells but not in oestrogen receptor (ER)-positive MCF-7 or MDA-MB-361 cells. However, despite augmenting MDA-MB-231_HM cell migration and invasion in vitro, FGF13 suppression almost completely blocked the spontaneous metastasis of MDA-MB-231_HM orthotopic xenografts to both lung and liver while having negligible impact on primary tumour growth. Together, these data indicate that FGF13 may represent a therapeutic target for blocking metastatic outgrowth of certain TNBCs. Further evaluation of the roles of individual FGF13 protein isoforms in progression of the different subtypes of breast cancer is warranted.


Asunto(s)
Factores de Crecimiento de Fibroblastos/metabolismo , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Animales , Línea Celular Tumoral , Movimiento Celular/fisiología , Femenino , Factores de Crecimiento de Fibroblastos/biosíntesis , Factores de Crecimiento de Fibroblastos/genética , Técnicas de Silenciamiento del Gen , Xenoinjertos , Humanos , Ratones Endogámicos BALB C , Ratones Endogámicos NOD , Ratones SCID , Metástasis de la Neoplasia , Células Madre Neoplásicas , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Transcriptoma , Neoplasias de la Mama Triple Negativas/genética , Regulación hacia Arriba
6.
JCI Insight ; 52019 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-30830863

RESUMEN

Anthracyclines are amongst the most effective chemotherapeutics ever developed, but they produce grueling side-effects, serious adverse events and resistance often develops over time. We found that these compounds can be sequestered by secreted cellular Prion protein (PrPC), blocking their cytotoxic activity. This effect was dose-dependent using either cell line-conditioned medium or human serum as a source of PrPC. Genetic depletion of PrPC or inhibition of binding via chelation of ionic copper prevented the interaction and restored cytotoxic activity. This was more pronounced for doxorubicin than its epimer, epirubicin. Investigating the relevance to breast cancer management, we found that the levels of PRNP transcript in pre-treatment tumor biopsies stratified relapse-free survival after neoadjuvant treatment with anthracyclines, particularly amongst doxorubicin-treated patients with residual disease at surgery (p=2.8E-08). These data suggest that local sequestration could mediate treatment resistance. Consistent with this, tumor cell expression of PrPC protein correlated with poorer response to doxorubicin but not epirubicin in an independent cohort analyzed by immunohistochemistry, particularly soluble isoforms released into the extracellular environment by shedding (p=0.015). These findings have important potential clinical implications for frontline regimen decision-making. We suggest there is warranted utility for prognostic PrPC/PRNP assays to guide chemo-sensitization strategies that exploit an understanding of PrPC-anthracycline-copper ion complexes.


Asunto(s)
Antraciclinas/farmacología , Antibióticos Antineoplásicos/farmacología , Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Resistencia a Antineoplásicos/genética , Proteínas Priónicas/metabolismo , Adulto , Antraciclinas/uso terapéutico , Antibióticos Antineoplásicos/uso terapéutico , Biomarcadores de Tumor/sangre , Biomarcadores de Tumor/genética , Neoplasias de la Mama/sangre , Neoplasias de la Mama/genética , Neoplasias de la Mama/mortalidad , Línea Celular Tumoral , Medios de Cultivo Condicionados/metabolismo , Conjuntos de Datos como Asunto , Supervivencia sin Enfermedad , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Epirrubicina/farmacología , Epirrubicina/uso terapéutico , Femenino , Estudios de Seguimiento , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Estimación de Kaplan-Meier , Persona de Mediana Edad , Selección de Paciente , Proteínas Priónicas/sangre , Proteínas Priónicas/genética , Pronóstico , Unión Proteica , Isoformas de Proteínas/sangre , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , ARN Interferente Pequeño/metabolismo
7.
Dis Model Mech ; 11(5)2018 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-29720474

RESUMEN

Triple-negative breast cancer (TNBC) represents 10-20% of all human ductal adenocarcinomas and has a poor prognosis relative to other subtypes. Hence, new molecular targets for therapeutic intervention are necessary. Analyses of panels of human or mouse cancer lines derived from the same individual that differ in their cellular phenotypes but not in genetic background have been instrumental in defining the molecular players that drive the various hallmarks of cancer. To determine the molecular regulators of metastasis in TNBC, we completed a rigorous in vitro and in vivo characterisation of four populations of the MDA-MB-231 human breast cancer line ranging in aggressiveness from non-metastatic to spontaneously metastatic to lung, liver, spleen and lymph node. Single nucleotide polymorphism (SNP) array analyses and genome-wide mRNA expression profiles of tumour cells isolated from orthotopic mammary xenografts were compared between the four lines to define both cell autonomous pathways and genes associated with metastatic proclivity. Gene set enrichment analysis (GSEA) demonstrated an unexpected association between both ribosome biogenesis and mRNA metabolism and metastatic capacity. Differentially expressed genes or families of related genes were allocated to one of four categories, associated with either metastatic initiation (e.g. CTSC, ENG, BMP2), metastatic virulence (e.g. ADAMTS1, TIE1), metastatic suppression (e.g. CST1, CST2, CST4, CST6, SCNNA1, BMP4) or metastatic avirulence (e.g. CD74). Collectively, this model system based on MDA-MB-231 cells should be useful for the assessment of gene function in the metastatic cascade and also for the testing of novel experimental therapeutics for the treatment of TNBC.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Genómica , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología , Ensayos Antitumor por Modelo de Xenoinjerto , Animales , Proteína Morfogenética Ósea 4/genética , Proteína Morfogenética Ósea 4/metabolismo , Bovinos , Ciclo Celular/genética , Línea Celular Tumoral , Cistatina M/genética , Cistatina M/metabolismo , Variaciones en el Número de Copia de ADN/genética , Metilación de ADN/genética , ADN de Neoplasias/metabolismo , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/uso terapéutico , Humanos , Metástasis de la Neoplasia , Fenotipo , Polimorfismo de Nucleótido Simple/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico
8.
Breast Cancer Res Treat ; 170(1): 179-188, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29468485

RESUMEN

PURPOSE: We aimed to generate and characterize a novel cell line from a breast cancer bone metastasis to better study the progression of the disease. METHODS: The cell line, P7731, was derived from a metastatic bone lesion of a breast cancer patient and assessed for marker expression. P7731 was analyzed for DNA copy number variation, somatic mutations, and gene expression and was compared with the primary tumor. RESULTS: P7731 cells are negative for estrogen receptor alpha (ERα), progesterone receptor (PR), and HER2 (triple-negative); strongly express vimentin (100% of cells positive) and also express cytokeratins 8/18 and 19 but at lower frequencies. Flow cytometry indicates P7731 cells are predominantly CD44+/CD49f+/EpCAM-, consistent with a primitive, mesenchymal-like phenotype. The cell line is tumorigenic in immunocompromised mice. Exome sequencing identified a total of 45 and 76 somatic mutations in the primary tumor and cell line, respectively, of which 32 were identified in both samples and included mutations in known driver genes PIK3CA, TP53, and ARID1A. P7731 retains the DNA copy number alterations present in the matching primary tumor. Homozygous deletions detected in the cell line and in the primary tumor were found in regions containing three known (CDKN2A, CDKN2B, and CDKN1B) and 23 putative tumor suppressor genes. Cell line-specific gene amplification coupled with mRNA expression analysis revealed genes and pathways with potential pro-metastatic functions. CONCLUSION: This novel human breast cancer-bone metastasis cell line will be a useful model to study aspects of breast cancer biology, particularly metastasis-related changes from breast to bone.


Asunto(s)
Neoplasias Óseas/patología , Línea Celular Tumoral , Proteínas de Neoplasias/genética , Neoplasias de la Mama Triple Negativas/patología , Animales , Neoplasias Óseas/genética , Neoplasias Óseas/secundario , Mama/patología , Variaciones en el Número de Copia de ADN/genética , Exoma/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Células MCF-7 , Ratones , Mutación , Neoplasias de la Mama Triple Negativas/genética
9.
Sci Rep ; 7: 43774, 2017 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-28262792

RESUMEN

Glucocorticoids are commonly used to prevent chemotherapy-induced nausea and vomiting despite a lack of understanding of their direct effect on cancer progression. Recent studies suggest that glucocorticoids inhibit cancer cell migration. However, this action has not been investigated in estrogen receptor (ER)-negative breast tumour cells, although activation of the glucocorticoid receptor (GR) is associated with a worse prognosis in ER-negative breast cancers. In this study we have explored the effect of glucocorticoids on the migration of the ER-negative MDA-MB-231 human breast tumour cell line and the highly metastatic MDA-MB-231-HM.LNm5 cell line that was generated through in vivo cycling. We show for the first time that glucocorticoids inhibit 2- and 3-dimensional migration of MDA-MB-231 cells. Selection of cells for high metastatic potential resulted in a less migratory cell phenotype that was resistant to regulation by glucocorticoids and showed decreased GR receptor expression. The emergence of glucocorticoid resistance during metastatic selection may partly explain the apparent disparity between the clinical and in vitro evidence regarding the actions of glucocorticoids in cancer. These findings highlight the highly plastic nature of tumour cells, and underscore the need to more fully understand the direct effect of glucocorticoid treatment on different stages of metastatic progression.


Asunto(s)
Movimiento Celular/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glucocorticoides/farmacología , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Resistencia a Antineoplásicos/genética , Femenino , Perfilación de la Expresión Génica , Humanos , Invasividad Neoplásica , Receptores de Estrógenos/metabolismo
10.
Pharmacol Res ; 119: 278-288, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28212890

RESUMEN

Annexin A1 is a multifunctional protein characterised by its actions in modulating the innate and adaptive immune response. Accumulating evidence of altered annexin A1 expression in many human tumours raises interest in its functional role in cancer biology. In breast cancer, altered annexin A1 expression levels suggest a potential influence on tumorigenic and metastatic processes. However, reports of conflicting results reveal a relationship that is much more complex than first conceptualised. In this review, we explore the diverse actions of annexin A1 on breast tumour cells and various host cell types, including stromal immune and structural cells, particularly in the context of cancer immunoediting.


Asunto(s)
Anexina A1/inmunología , Neoplasias de la Mama/patología , Mama/patología , Inmunidad Adaptativa , Animales , Anexina A1/análisis , Anexina A1/genética , Anexina A1/metabolismo , Mama/inmunología , Mama/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/metabolismo , Movimiento Celular , Transición Epitelial-Mesenquimal , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Inmunidad Celular , Inmunidad Innata , Invasividad Neoplásica/genética , Invasividad Neoplásica/inmunología , Invasividad Neoplásica/patología , Microambiente Tumoral
11.
Cytokine Growth Factor Rev ; 26(5): 489-98, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26209885

RESUMEN

Interleukin (IL)-11 is a member of the IL-6 family of cytokines that is defined by the shared use of the GP130 signal transducing receptor subunit. In addition of its long recognized activities as a hemopoietic growth factor, IL-11 has an emerging role in epithelial cancer biology. Through the activation of the GP130-Janus kinase signaling cascade and associated transcription factor STAT3, IL-11 can confer many of the tumor intrinsic 'hallmark' capabilities to neoplastic cells, if they express the ligand-specific IL-11Rα receptor subunit. Accordingly, IL-11 signaling has recently been identified as a rate-limiting step for the growth tumors arising from the mucosa of the gastrointestinal tract. However, there is less appreciation for a potential role of IL-11 to support breast cancer progression, apart from its well documented capacity to facilitate bone metastasis. Here we review evidence that IL-11 expression in breast cancer correlates with poor disease outcome and discuss some of the molecular mechanisms that are likely to underpin these observations. These include the capacity of IL-11 to stimulate survival and proliferation of cancer cells alongside angiogenesis of the primary tumor and of metastatic progenies at distant organs. We review current strategies to interfere with IL-11 signaling and advocate that inhibition of IL-11 signaling may represent an emerging therapeutic opportunity for numerous cancers.


Asunto(s)
Neoplasias de la Mama/inmunología , Regulación Neoplásica de la Expresión Génica/inmunología , Interleucina-11/inmunología , Proteínas de Neoplasias/inmunología , Transducción de Señal/inmunología , Neoplasias de la Mama/mortalidad , Neoplasias de la Mama/patología , Femenino , Humanos
12.
Dis Model Mech ; 8(8): 805-15, 2015 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-26035389

RESUMEN

The cells of the intestinal epithelium provide a selectively permeable barrier between the external environment and internal tissues. The integrity of this barrier is maintained by tight junctions, specialised cell-cell contacts that permit the absorption of water and nutrients while excluding microbes, toxins and dietary antigens. Impairment of intestinal barrier function contributes to multiple gastrointestinal disorders, including food hypersensitivity, inflammatory bowel disease (IBD) and colitis-associated cancer (CAC). Glycoprotein A33 (GPA33) is an intestinal epithelium-specific cell surface marker and member of the CTX group of transmembrane proteins. Roles in cell-cell adhesion have been demonstrated for multiple CTX family members, suggesting a similar function for GPA33 within the gastrointestinal tract. To test a potential requirement for GPA33 in intestinal barrier function, we generated Gpa33(-/-) mice and subjected them to experimental regimens designed to produce food hypersensitivity, colitis and CAC. Gpa33(-/-) mice exhibited impaired intestinal barrier function. This was shown by elevated steady-state immunosurveillance in the colonic mucosa and leakiness to oral TRITC-labelled dextran after short-term exposure to dextran sodium sulphate (DSS) to injure the intestinal epithelium. Gpa33(-/-) mice also exhibited rapid onset and reduced resolution of DSS-induced colitis, and a striking increase in the number of colitis-associated tumours produced by treatment with the colon-specific mutagen azoxymethane (AOM) followed by two cycles of DSS. In contrast, Gpa33(-/-) mice treated with AOM alone showed no increase in sporadic tumour formation, indicating that their increased tumour susceptibility is dependent on inflammatory stimuli. Finally, Gpa33(-/-) mice displayed hypersensitivity to food allergens, a common co-morbidity in humans with IBD. We propose that Gpa33(-/-) mice provide a valuable model to study the mechanisms linking intestinal permeability and multiple inflammatory pathologies. Moreover, this model could facilitate preclinical studies aimed at identifying drugs that restore barrier function.


Asunto(s)
Enfermedades Inflamatorias del Intestino/patología , Mucosa Intestinal/patología , Glicoproteínas de Membrana/deficiencia , Animales , Antígenos/inmunología , Colitis/inducido químicamente , Colitis/complicaciones , Colitis/patología , Neoplasias Colorrectales/etiología , Neoplasias Colorrectales/patología , Sulfato de Dextran , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Alimentos , Tolerancia Inmunológica/inmunología , Glicoproteínas de Membrana/metabolismo , Ratones Endogámicos C57BL
13.
Dis Model Mech ; 8(3): 237-51, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25633981

RESUMEN

The translation of basic research into improved therapies for breast cancer patients requires relevant preclinical models that incorporate spontaneous metastasis. We have completed a functional and molecular characterisation of a new isogenic C57BL/6 mouse model of breast cancer metastasis, comparing and contrasting it with the established BALB/c 4T1 model. Metastatic EO771.LMB tumours were derived from poorly metastatic parental EO771 mammary tumours. Functional differences were evaluated using both in vitro assays and spontaneous metastasis assays in mice. Results were compared to non-metastatic 67NR and metastatic 4T1.2 tumours of the 4T1 model. Protein and transcript levels of markers of human breast cancer molecular subtypes were measured in the four tumour lines, as well as p53 (Tp53) tumour-suppressor gene status and responses to tamoxifen in vivo and in vitro. Array-based expression profiling of whole tumours identified genes and pathways that were deregulated in metastatic tumours. EO771.LMB cells metastasised spontaneously to lung in C57BL/6 mice and displayed increased invasive capacity compared with parental EO771. By immunohistochemical assessment, EO771 and EO771.LMB were basal-like, as was the 4T1.2 tumour, whereas 67NR had a luminal phenotype. Primary tumours from all lines were negative for progesterone receptor, Erb-b2/Neu and cytokeratin 5/6, but positive for epidermal growth factor receptor (EGFR). Only 67NR displayed nuclear estrogen receptor alpha (ERα) positivity. EO771 and EO771.LMB expressed mutant p53, whereas 67NR and 4T1.2 were p53-null. Integrated molecular analysis of both the EO771/EO771.LMB and 67NR/4T1.2 pairs indicated that upregulation of matrix metalloproteinase-3 (MMP-3), parathyroid hormone-like hormone (Pthlh) and S100 calcium binding protein A8 (S100a8) and downregulation of the thrombospondin receptor (Cd36) might be causally involved in metastatic dissemination of breast cancer.


Asunto(s)
Modelos Animales de Enfermedad , Neoplasias Mamarias Animales/patología , Metástasis de la Neoplasia/patología , Animales , Biomarcadores de Tumor/metabolismo , Línea Celular Tumoral , Receptor alfa de Estrógeno/antagonistas & inhibidores , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Inmunohistoquímica , Neoplasias Mamarias Animales/clasificación , Neoplasias Mamarias Animales/tratamiento farmacológico , Neoplasias Mamarias Animales/genética , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Metástasis de la Neoplasia/genética , Proteínas de Neoplasias/metabolismo , Fenotipo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Tamoxifeno/farmacología , Tamoxifeno/uso terapéutico , Proteína p53 Supresora de Tumor/metabolismo
14.
Cancer Res ; 74(18): 5091-102, 2014 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-25224959

RESUMEN

The TGFß growth factor family member BMP4 is a potent suppressor of breast cancer metastasis. In the mouse, the development of highly metastatic mammary tumors is associated with an accumulation of myeloid-derived suppressor cells (MDSC), the numbers of which are reduced by exogenous BMP4 expression. MDSCs are undetectable in naïve mice but can be induced by treatment with granulocyte colony-stimulating factor (G-CSF/Csf3) or by secretion of G-CSF from the tumor. Both tumor-induced and G-CSF-induced MDSCs effectively suppress T-cell activation and proliferation, leading to metastatic enhancement. BMP4 reduces the expression and secretion of G-CSF by inhibiting NF-κB (Nfkb1) activity in human and mouse tumor lines. Because MDSCs correlate with poor prognosis in patients with breast cancer, therapies based on activation of BMP4 signaling may offer a novel treatment strategy for breast cancer. Cancer Res; 74(18); 5091-102. ©2014 AACR.


Asunto(s)
Proteína Morfogenética Ósea 4/inmunología , Neoplasias de la Mama/patología , Neoplasias Mamarias Experimentales/patología , Células Mieloides/inmunología , Animales , Neoplasias de la Mama/inmunología , Línea Celular Tumoral , Femenino , Humanos , Neoplasias Mamarias Experimentales/inmunología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C3H , Ratones Desnudos , FN-kappa B/inmunología , Metástasis de la Neoplasia , Transducción de Señal
15.
J Pharmacol Exp Ther ; 351(1): 172-80, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25077525

RESUMEN

Inflammation has been implicated in tumor initiation, angiogenesis, and metastasis, and linked to the development of more aggressive, therapy-resistant estrogen receptor (ER)-positive breast cancer. Resolvin D2 (RvD2) is a potent anti-inflammatory lipid mediator. As RvD2 may be synthesized within breast tumors by both tumor cells and the surrounding stroma cells and is present in plasma at bioactive concentrations, we sought to characterize the impact of RvD2 on cell processes underlying breast tumor growth and spread. Trypan-blue exclusion, transfection with estrogen response element (ERE) reporter, real-time quantitative polymerase chain reaction, competitive radioligand binding assays, Western blotting, and immunofluorescence were the techniques used. Unexpectedly, whereas RvD2 (10-1000 nM) supported the proliferation of the ER-positive breast tumor (MCF-7) cells, it did not affect the ER-negative MDA-MB-231 cell number. The proliferative effect of RvD2 in MCF-7 cells was attenuated by the ER antagonist ICI 182,780 (7α-[9-[(4,4,5,5,5-pentafluoropentyl)sulfinyl]nonyl]estra-1,3,5(10)-triene-3,17ß-diol). Furthermore, RvD2 increased ERE transcriptional activity in a number of ER-positive breast and ovarian tumor cell lines. This activation was also inhibited by ICI 182,780. RvD2 altered the expression of a subset of estrogen-responsive genes. Although binding experiments showed that RvD2 did not directly compete with [(3)H]17ß-estradiol for ER binding, prior exposure of MCF-7 cells to RvD2 resulted in a significant reduction in the apparent cytosolic ER density. Confocal immunocytochemistry and Western blotting studies showed that RvD2 promoted nuclear localization of ERα. These observations indicate that RvD2 displays significant but indirect estrogenic properties and has the potential to play a role in estrogen-dependent breast cancer progression.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Ácidos Docosahexaenoicos/farmacología , Receptores de Estrógenos/metabolismo , Ácidos Docosahexaenoicos/farmacocinética , Estradiol/análogos & derivados , Estradiol/farmacología , Fulvestrant , Humanos , Células MCF-7 , Unión Proteica , Receptores de Estrógenos/agonistas , Receptores de Estrógenos/antagonistas & inhibidores
16.
PLoS One ; 6(4): e18064, 2011 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-21533284

RESUMEN

Molecular subtypes of serous ovarian cancer have been recently described. Using data from independent datasets including over 900 primary tumour samples, we show that deregulation of the Let-7 pathway is specifically associated with the C5 molecular subtype of serous ovarian cancer. DNA copy number and gene expression of HMGA2, alleles of Let-7, LIN28, LIN28B, MYC, MYCN, DICER1, and RNASEN were measured using microarray and quantitative reverse transcriptase PCR. Immunohistochemistry was performed on 127 samples using tissue microarrays and anti-HMGA2 antibodies. Fluorescence in situ hybridisation of bacterial artificial chromosomes hybridized to 239 ovarian tumours was used to measure translocation at the LIN28B locus. Short interfering RNA knockdown in ovarian cell lines was used to test the functionality of associations observed. Four molecular subtypes (C1, C2, C4, C5) of high-grade serous ovarian cancers were robustly represented in each dataset and showed similar pattern of patient survival. We found highly specific activation of a pathway involving MYCN, LIN28B, Let-7 and HMGA2 in the C5 molecular subtype defined by MYCN amplification and over-expression, over-expression of MYCN targets including the Let-7 repressor LIN28B, loss of Let-7 expression and HMGA2 amplification and over-expression. DICER1, a known Let-7 target, and RNASEN were over-expressed in C5 tumours. We saw no evidence of translocation at the LIN28B locus in C5 tumours. The reported interaction between LIN28B and Let-7 was recapitulated by siRNA knockdown in ovarian cancer cell lines. Our results associate deregulation of MYCN and downstream targets, including Let-7 and oncofetal genes, with serous ovarian cancer. We define for the first time how elements of an oncogenic pathway, involving multiple genes that contribute to stem cell renewal, is specifically altered in a molecular subtype of serous ovarian cancer. By defining the drivers of a molecular subtype of serous ovarian cancers we provide a novel strategy for targeted therapeutic intervention.


Asunto(s)
Proteínas de Unión al ADN/genética , Regulación Neoplásica de la Expresión Génica , MicroARNs/genética , Proteínas Nucleares/genética , Proteínas Oncogénicas/genética , Neoplasias Ováricas/genética , Regulación hacia Abajo , Femenino , Técnicas de Silenciamiento del Gen , Humanos , Inmunohistoquímica , Hibridación Fluorescente in Situ , Proteína Proto-Oncogénica N-Myc , Proteínas de Unión al ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
17.
Cancer Res ; 71(6): 2172-82, 2011 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-21252116

RESUMEN

Insulin-like growth factor 2 mRNA-binding protein-1 (IMP-1) is an oncofetal protein that binds directly to and stabilizes oncogenic c-Myc and regulates, in turn, its posttranscriptional expression and translation. In contrast to normal adult tissue, IMP-1 is reexpressed and/or overexpressed in human cancers. We show that knockdown of c-Myc in human colon cancer cell lines increases the expression of mature let-7 miRNA family members and downregulates several of its mRNA targets: IMP-1, Cdc34, and K-Ras. We further show that loss of IMP-1 inhibits Cdc34, Lin-28B, and K-Ras, suppresses SW-480 cell proliferation and anchorage-independent growth, and promotes caspase- and lamin-mediated cell death. We also found that IMP-1 binds to the coding region and 3'UTR of K-Ras mRNA. RNA microarray profiling and validation by reverse transcription PCR reveals that the p53-inducible proapoptotic protein CYFIP2 is upregulated in IMP-1 knockdown SW480 cells, a novel finding. We also show that overexpression of IMP-1 increases c-Myc and K-Ras expression and LIM2405 cell proliferation. Furthermore, we show that loss of IMP-1 induces Caspase-3- and PARP-mediated apoptosis, and inhibits K-Ras expression in SW480 cells, which is rescued by CYFIP2 knockdown. Importantly, analysis of 228 patients with colon cancers reveals that IMP-1 is significantly upregulated in differentiated colon tumors (P ≤ 0.0001) and correlates with K-Ras expression (r = 0.35, P ≤ 0.0001) relative to adjacent normal mucosa. These findings indicate that IMP-1, interrelated with c-Myc, acts upstream of K-Ras to promote survival through a novel mechanism that may be important in colon cancer pathogenesis.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Neoplasias del Colon/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas ras/metabolismo , Regiones no Traducidas 3'/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Apoptosis , Células CACO-2 , Línea Celular Tumoral , Proliferación Celular , Supervivencia Celular , Neoplasias del Colon/genética , Neoplasias del Colon/patología , Femenino , Humanos , Immunoblotting , Masculino , Unión Proteica , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Interferencia de ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Matrices Tisulares , Regulación hacia Arriba , Proteínas ras/genética
18.
FASEB J ; 25(2): 483-96, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20930115

RESUMEN

The role of the calcium- and phospholipid-binding protein annexin I (ANXA1) in cell cycle regulation has been investigated in estrogen receptor (ER)-positive MCF-7 and ER-negative MDA-MB-231 breast tumor cell lines. In MCF-7 cells, ANXA1-targeting small interfering RNA (siRNA) reduced ANXA1 mRNA and protein levels and attenuated cell proliferation induced by FCS, estradiol, or epidermal growth factor. Well-characterized agonists for the known ANXA1 receptor, FPR2, including the ANXA1 N-terminal proteolytic product ANXA1(2-26), lipoxin A(4) (LXA(4)), and the synthetic peptide, Trp-Lys-Tyr-Met-Val-D-Met (WKYMVm), stimulated proliferation of MCF-7 and MDA-MB-231 cells that was attenuated by incubation with FPR2 antagonists WRW(4) (1 µM) or Boc2 (100 nM) or by siRNA against FPR2. FCS-induced mitogenic responses were attenuated by each of the FPR antagonists and by siRNA against FPR2 and, to a lesser extent, FPR1. LXA(4) increased phosphorylation of Akt, p70(S6K) but not ERK1/2. Increases in cyclin D1 protein induced by FCS or LXA(4) were blocked by the PI3 kinase inhibitor, LY294002, and attenuated by FPR2 antagonism using Boc2. In invasive breast cancer, immunohistochemistry revealed the presence of ANXA1 and its receptor, FPR2, in both tumor epithelium and stromal cells. These observations suggest a novel signaling role for ANXA1 in mitogen-activated proliferation of breast tumor epithelial cells that is mediated via activation of FPR1 and FPR2.


Asunto(s)
Anexina A1/metabolismo , Neoplasias de la Mama/metabolismo , Mitógenos/farmacología , Receptores de Formil Péptido/metabolismo , Receptores de Lipoxina/metabolismo , Anexina A1/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proliferación Celular , Cromonas/farmacología , Inhibidores Enzimáticos/farmacología , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Lipoxinas/metabolismo , Mitógenos/metabolismo , Morfolinas/farmacología , Inhibidores de las Quinasa Fosfoinosítidos-3 , Interferencia de ARN , ARN Interferente Pequeño , Receptores de Formil Péptido/antagonistas & inhibidores , Receptores de Formil Péptido/genética , Receptores de Lipoxina/antagonistas & inhibidores , Receptores de Lipoxina/genética , Transducción de Señal
19.
Am J Hum Genet ; 86(3): 420-33, 2010 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-20206335

RESUMEN

It is now understood that epigenetic alterations occur frequently in sporadic breast carcinogenesis, but little is known about the epigenetic alterations associated with familial breast tumors. We performed genome-wide DNA-methylation profiling on familial breast cancers (n = 33) to identify patterns of methylation specific to the different mutation groups (BRCA1, BRCA2, and BRCAx) or intrinsic subtypes of breast cancer (basal, luminal A, luminal B, HER2-amplified, and normal-like). We used methylated DNA immunoprecipitation (MeDIP) on Affymetrix promoter chips to interrogate methylation profiles across 25,500 distinct transcripts. Using a support vector machine classification algorithm, we demonstrated that genome-wide methylation profiles predicted tumor mutation status with estimated error rates of 19% (BRCA1), 31% (BRCA2), and 36% (BRCAx) but did not accurately predict the intrinsic subtypes defined by gene expression. Furthermore, using unsupervised hierarchical clustering, we identified a distinct subgroup of BRCAx tumors defined by methylation profiles. We validated these findings in the 33 tumors in the test set, as well as in an independent validation set of 47 formalin-fixed, paraffin-embedded familial breast tumors, by pyrosequencing and Epityper. Finally, gene-expression profiling and SNP CGH array previously performed on the same samples allowed full integration of methylation, gene-expression, and copy-number data sets, revealing frequent hypermethylation of genes that also displayed loss of heterozygosity, as well as of genes that show copy-number gains, providing a potential mechanism for expression dosage compensation. Together, these data show that methylation profiles for familial breast cancers are defined by the mutation status and are distinct from the intrinsic subtypes.


Asunto(s)
Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Metilación de ADN/genética , ADN de Neoplasias/genética , ADN de Neoplasias/metabolismo , Mutación , Islas de CpG , Femenino , Perfilación de la Expresión Génica , Genes BRCA1 , Genes BRCA2 , Humanos , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena de la Polimerasa , Regiones Promotoras Genéticas
20.
Breast Cancer Res Treat ; 123(3): 661-77, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19960244

RESUMEN

Extensive expression profiling studies have shown that sporadic breast cancer is composed of five clinically relevant molecular subtypes. However, although BRCA1-related tumours are known to be predominantly basal-like, there are few published data on other classes of familial breast tumours. We analysed a cohort of 75 BRCA1, BRCA2 and non-BRCA1/2 breast tumours by gene expression profiling and found that 74% BRCA1 tumours were basal-like, 73% of BRCA2 tumours were luminal A or B, and 52% non-BRCA1/2 tumours were luminal A. Thirty-four tumours were also analysed by single nucleotide polymorphism-comparative genomic hybridization (SNP-CGH) arrays. Copy number data could predict whether a tumour was basal-like or luminal with high accuracy, but could not predict its mutation class. Basal-like BRCA1 and basal-like non-BRCA1 tumours were very similar, and contained the highest number of chromosome aberrations. We identified regions of frequent gain containing potential driver genes in the basal (8q and 12p) and luminal A tumours (1q and 17q). Regions of homozygous loss associated with decreased expression of potential tumour suppressor genes were also detected, including in basal tumours (5q and 9p), and basal and luminal tumours (10q). This study highlights the heterogeneity of familial tumours and the clinical consequences for treatment and prognosis.


Asunto(s)
Neoplasias de la Mama/genética , Dosificación de Gen , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Predisposición Genética a la Enfermedad , Proteína BRCA1/genética , Proteína BRCA2/genética , Neoplasias de la Mama/patología , Neoplasias de la Mama/terapia , Aberraciones Cromosómicas , Análisis por Conglomerados , Estudios de Cohortes , Hibridación Genómica Comparativa , Metilación de ADN , Femenino , Perfilación de la Expresión Génica/métodos , Herencia , Humanos , Pérdida de Heterocigocidad , Análisis de Secuencia por Matrices de Oligonucleótidos , Linaje , Polimorfismo de Nucleótido Simple , Pronóstico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...