Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Environ Manage ; 358: 120822, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38599088

RESUMEN

Contamination by wastewater has been traditionally assessed by measuring faecal coliforms, such as E. coli and entereococci. However, using micropollutants to track wastewater input is gaining interest. In this study, we identified nine micropollutant indicators that could be used to characterize water quality and wastewater treatment efficiency in pond-based wastewater treatment plants (WWTPs) of varying configuration. Of 232 micropollutants tested, nine micropollutants were detected in treated wastewater at concentrations and frequencies suitable to be considered as indicators for treated wastewater. The nine indicators were then classified as stable (carbamazepine, sucralose, benzotriazole, 4+5-methylbenzotriazole), labile (atorvastatin, naproxen, galaxolide) or intermediate/uncertain (gemfibrozil, tris(chloropropyl)phosphate isomers) based on observed removals in the pond-based WWTPs and correlations between micropollutant and dissolved organic carbon removal. The utility of the selected indicators was evaluated by assessing the wastewater quality in different stages of wastewater treatment in three pond-based WWTPs, as well as selected groundwater bores near one WWTP, where treated wastewater was used to irrigate a nearby golf course. Ratios of labile to stable indicators provided insight into the treatment efficiency of different facultative and maturation ponds and highlighted the seasonal variability in treatment efficiency for some pond-based WWTPs. Additionally, indicator ratios of labile to stable indicators identified potential unintended release of untreated wastewater to groundwater, even with the presence of micropollutants in other groundwater bores related to approved reuse of treated wastewater.


Asunto(s)
Agua Subterránea , Aguas Residuales , Contaminantes Químicos del Agua , Aguas Residuales/química , Aguas Residuales/análisis , Agua Subterránea/química , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente , Eliminación de Residuos Líquidos/métodos , Calidad del Agua , Triazoles/análisis , Purificación del Agua/métodos , Gemfibrozilo/análisis
2.
J Chromatogr A ; 1685: 463562, 2022 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-36323095

RESUMEN

A direct injection liquid chromatography-tandem mass spectrometry method was successfully developed for the analysis of 19 illicit drugs and psychopharmaceuticals in raw and treated wastewater. The method includes the analysis of stimulants and opioids, and antidepressant, antipsychotic, antianxiety, appetite suppressant and hallucinogen drugs. The method limits of quantification range from 5 - 59 ng L-1 and 2 - 38 ng L-1 in raw and treated wastewater, respectively. Analysis of raw and treated wastewater samples collected daily for a week from a wastewater treatment plant operating with oxidation ditch technology showed that codeine and tramadol were the drugs with the highest median mass concentrations in raw wastewater (1800 and 1000 ng L-1, respectively). The presence of some of the drugs in treated wastewater samples implies incomplete removal of illicit drugs and psychopharmaceuticals during wastewater treatment. This method offers an alternative to existing methods for faster screening of wastewater samples without the need for sample pre-concentration techniques, such as solid-phase extraction, with limits of detection in the low nanogram per litre range.


Asunto(s)
Drogas Ilícitas , Contaminantes Químicos del Agua , Aguas Residuales/química , Drogas Ilícitas/análisis , Espectrometría de Masas en Tándem/métodos , Contaminantes Químicos del Agua/análisis , Cromatografía Liquida/métodos , Extracción en Fase Sólida/métodos , Psicotrópicos
3.
Water Res ; 185: 116083, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-32798887

RESUMEN

Chloramine is the disinfectant of choice for long drinking water distribution systems since it is more stable than chlorine, therefore providing a longer lasting disinfectant residual and producing less disinfection byproducts. However, to deliver safe drinking water in remote areas, redosing stations are used where (mostly) chlorine is added to the water to re-establish a disinfectant residual. In this study, the use of a highly concentrated preformed monochloramine solution instead of chlorine for redosing in tanks or reservoirs along extensive distribution systems was investigated. This will avoid unwanted reactions due to chlorine reactivity (formation of disinfection byproducts) and increase the disinfectant stability. Highly concentrated monochloramine solutions (15 mM, 1 gCl2 L-1) are most stable at high pH (10) and low temperature. It was found that the current kinetic model used for drinking water application was not accurate for highly concentrated monochloramine. A simplified kinetic model was developed and successfully used to predict monochloramine stability in our conditions. This will assist water utilities for application of preformed concentrated monochloramine allowing monochloramine redosing in long drinking water distribution systems. Hydrazine, a compound of health concern, might form at high monochloramine concentrations and high pH and needs to be carefully controlled.


Asunto(s)
Desinfectantes , Agua Potable , Purificación del Agua , Cloraminas , Cloro , Desinfección
4.
Environ Sci Process Impacts ; 22(3): 653-662, 2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-32150177

RESUMEN

The use of monochloramine as an alternative disinfectant to chlorine in drinking water treatment can lead to increased formation of emerging nitrogenous halogenated disinfection by-products (DBPs), even when the formation of regulated halogenated DBPs has decreased. In this study, we investigated formation of the semivolatile haloacetonitriles (HANs) from model nitrogen-containing compounds (6 amines, 1 amide, 6 amino acids, and 2 nitrogen-containing aromatic chemicals) and natural organic matter (NOM) reference materials after chloramination. In agreement with previous studies, most amino acids formed dichloroacetonitrile (DCAN). Additionally, DCAN formed from two amines containing aromatic rings (N,N-dimethylaniline and 3-(dimethylamino-methyl)indole) and the two nitrogen-containing aromatic chemicals (cotinine and phenytoin). This is the first report of DCAN formation from these precursors. DCAN also formed after chloramination of NOM reference materials, with the highest formation from the NOM material with the highest aromaticity. The results provide new evidence of a DCAN formation pathway from cleavage of activated aromatic structures after electrophilic substitution of chlorine and addition of monochloramine to the ring system. In particular, the results suggest that the previously proposed aldehyde pathway from the amino acid group is not responsible for the majority of DCAN formation from amino acids with an activated aromatic ring system. This newly proposed formation pathway for DCAN from activated aromatic organic matter has significant implications for NOM removal during water treatment to minimise DBP formation. Studies using 15N-labelled monochloramine showed that there was significant incorporation of nitrogen from monochloramine into DCAN, demonstrating that monochloramine disinfection promotes the formation of HANs.


Asunto(s)
Desinfectantes , Contaminantes Químicos del Agua , Purificación del Agua , Acetonitrilos , Cloro , Desinfección , Halogenación , Agua
5.
Environ Sci Pollut Res Int ; 26(28): 29110-29126, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31392609

RESUMEN

Many studies of disinfection by-products (DBPs) in pools have focused on haloacetic acids, trihalomethanes, and chloramines, with less studies investigating the occurrence of other DBPs, such as haloketones, haloacetaldehydes, haloacetonitriles, halonitromethanes, and haloacetamides. Furthermore, while many studies have achieved a broadscreen analysis across several pools, fewer studies have followed the water quality of pools over time, with information regarding the production and fate of DBPs in pools over extended periods (e.g. > 1 year) being limited. This study reports the occurrence of 39 DBPs and several general water quality parameters in two newly built and filled swimming pools over 15 months, where investigations began prior to opening. DBP concentrations measured in this study were generally similar to or higher than those previously reported in chlorinated pools, with concentrations of chloroacetic acid, dichloroacetic acid, trichloroacetic acid, and chloral hydrate (trichloroacetaldehyde) in some samples being higher than previously reported maximum concentrations. Considering both pools, lower concentrations of DBPs were measured in the pool where a steady state non-purgeable organic carbon concentration was achieved, highlighting the importance of the establishment of a steady state balance of mineralisation versus addition of organic carbon to reduce precursors for DBP formation in pools. Pools were found to exhibit significantly higher estimated cytotoxicity than their filling water, which reflects the significantly higher concentrations of DBPs measured in the pools in comparison to the filling water. Chloral hydrate accounted for up to 99% the total estimated cytotoxicity and was found to be correlated to the number of pool entries, suggesting that swimmers may be a potential source of chloral hydrate precursors in pools. The presence and subsequent peak of non-purgeable organic carbon and DBPs prior to, and soon after, opening suggest that the building process and/or new pool infrastructure may have had a significant impact on the chemical water quality, particularly on DBP formation. This study includes the first quantification of bromochloroacetaldehyde, bromodichloroacetaldehyde, bromochloronitromethane, and dichloronitromethane in chlorinated swimming pools, and provides important new knowledge on the long-term trends of DBPs in pools.


Asunto(s)
Piscinas , Contaminantes Químicos del Agua/análisis , Acetatos , Hidrato de Cloral/análogos & derivados , Cloraminas , Desinfectantes/análisis , Desinfección , Halogenación , Trihalometanos/análisis , Agua/química , Calidad del Agua
6.
Water Res ; 158: 301-312, 2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-31051375

RESUMEN

While some microbial eukaryotes can improve effluent quality in wastewater treatment plants (WWTPs), eukaryotic waterborne pathogens are a threat to public health. This study aimed to identify Eukarya, particularly faecal pathogens including Cryptosporidium, in different treatment stages (influent, intermediate and effluent) from four WWTPs in Western Australia (WA). Three WWTPs that utilise stabilisation ponds and one WWTP that uses activated sludge (oxidation ditch) treatment technologies were sampled. Eukaryotic 18S rRNA (18S) was targeted in the wastewater samples (n = 26) for next-generation sequencing (NGS), and a mammalian-blocking primer was used to reduce the amplification of mammalian DNA. Overall, bioinformatics analyses revealed 49 eukaryotic phyla in WWTP samples, and three of these phyla contained human intestinal parasites, which were primarily detected in the influent. These human intestinal parasites either had a low percent sequence composition or were not detected in the intermediate and effluent stages and included the amoebozoans Endolimax sp., Entamoeba sp. and Iodamoeba sp., the human pinworm Enterobius vermicularis (Nematoda), and Blastocystis sp. subtypes (Sarcomastigophora). Six Blastocystis subtypes and four Entamoeba species were identified by eukaryotic 18S NGS, however, Cryptosporidium sp. and Giardia sp. were not detected. Real-time polymerase chain reaction (PCR) also failed to detect Giardia, but Cryptosporidium-specific NGS detected Cryptosporidium in all WWTPs, and a total of nine species were identified, including five zoonotic pathogens. Although eukaryotic 18S NGS was able to identify some faecal pathogens, this study has demonstrated that more specific NGS approaches for pathogen detection are more sensitive and should be applied to future wastewater pathogen assessments.


Asunto(s)
Cryptosporidium , Eucariontes , Animales , Heces , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , ARN Ribosómico 18S , Aguas Residuales , Australia Occidental
7.
Sci Total Environ ; 670: 1111-1124, 2019 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-31018427

RESUMEN

Recycled wastewater can carry human-infectious microbial pathogens and therefore wastewater treatment strategies must effectively eliminate pathogens before recycled wastewater is used to supplement drinking and agricultural water supplies. This study characterised the bacterial composition of four wastewater treatment plants (WWTPs) (three waste stabilisation ponds and one oxidation ditch WWTP using activated sludge treatment) in Western Australia. The hypervariable region 4 (V4) of the bacterial 16S rRNA (16S) gene was sequenced using next-generation sequencing (NGS) on the Illumina MiSeq platform. Sequences were pre-processed in USEARCH v10.0 and denoised into zero-radius taxonomic units (ZOTUs) with UNOISE3. Taxonomy was assigned to the ZOTUs using QIIME 2 and the Greengenes database and cross-checked with the NCBI nr/nt database. Bacterial composition of all WWTPs and treatment stages (influent, intermediate and effluent) were dominated by Proteobacteria (29.0-87.4%), particularly Betaproteobacteria (9.0-53.5%) and Gammaproteobacteria (8.6-34.6%). Nitrifying bacteria (Nitrospira spp.) were found only in the intermediate and effluent of the oxidation ditch WWTP, and denitrifying and floc-forming bacteria were detected in all WWTPs, particularly from the families Comamonadaceae and Rhodocyclales. Twelve pathogens were assigned taxonomy by the Greengenes database, but comparison of sequences from genera and families known to contain pathogens to the NCBI nr/nt database showed that only three pathogens (Arcobacter venerupis, Laribacter hongkongensis and Neisseria canis) could be identified in the dataset at the V4 region. Importantly, Enterobacteriaceae genera could not be differentiated. Family level taxa assigned by Greengenes database agreed with NCBI nr/nt in most cases, however, BLAST analyses revealed erroneous taxa in Greengenes database. This study highlights the importance of validating taxonomy of NGS sequences with databases such as NCBI nr/nt, and recommends including the V3 region of 16S in future short amplicon NGS studies that aim to identify bacterial enteric pathogens, as this will improve taxonomic resolution of most, but not all, Enterobacteriaceae species.


Asunto(s)
Bacterias/aislamiento & purificación , Técnicas Bacteriológicas/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , ARN Bacteriano/análisis , ARN Ribosómico 16S/análisis , Aguas Residuales/microbiología , Bacterias/clasificación , Bacterias/genética , Enterobacteriaceae/aislamiento & purificación , Análisis de Secuencia de ARN/métodos , Australia Occidental
8.
Indoor Air ; 29(3): 499-509, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30844099

RESUMEN

A simple method for the collection and analysis of the four brominated and chlorinated trihalomethanes (THMs) in air samples is described. Ambient air samples were collected in pre-prepared glass vials, with THM analysis performed using solid-phase microextraction gas chromatography-mass spectrometry, where the need for chemical reagents is minimized. Analytical parameters, including oven temperature program, solvent volume, incubation time, vial agitation, extraction time and temperature, as well as desorption time and temperature, were evaluated to ensure optimal method performance. The developed method allows for point-in-time quantification (compared to an average concentration measured over extended periods of time), with detection limits between 0.7 to 2.6 µg/m3 . Excellent linearity (r2  > 0.99), repeatability (3% to 11% RSD), and reproducibility (3% to 16% RSD) were demonstrated over a concentration range from 2 to 5000 µg/m3 . The method was validated for the analysis of THMs in indoor swimming pool air and was used to investigate the occurrence of THMs in the air above 15 indoor swimming pools. This is the first study to report the occurrence of THMs in swimming pool air in Australia, and concentrations higher than those previously reported in other countries were measured.


Asunto(s)
Contaminación del Aire Interior/análisis , Monitoreo del Ambiente/métodos , Cromatografía de Gases y Espectrometría de Masas/métodos , Microextracción en Fase Sólida/métodos , Trihalometanos/análisis , Reproducibilidad de los Resultados , Piscinas
9.
Sci Total Environ ; 664: 851-864, 2019 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-30769309

RESUMEN

Swimming pools are disinfected to protect against the risk of microbial disease, however, the formation of disinfection by-products (DBPs) is an unwanted consequence. While many studies have reported the occurrence of commonly investigated DBPs (trihalomethanes and haloacetic acids) in pools, few studies have investigated emerging DBP classes, such as the haloketones or haloacetaldehydes, and the nitrogenous haloacetamides, halonitromethanes, haloacetonitriles and N-nitrosamines. This study investigated the occurrence of sixty four DBPs from the eight aforementioned DBP classes in pools employing different treatment methods. Approximately 70% of the DBPs were detected in at least one of the pools, with most concentrations being equal to or greater than those previously reported. Chloral hydrate (trichloroacetaldehyde) was one of many DBPs detected in all chlorinated waters (202 to 1313 µg/L), and, on a molar basis, was the predominant DBP. Several other DBPs, namely chloroacetic acid, dichloroacetic acid, trichloroacetic acid, dichloroacetamide, dibromoacetamide, dibromochloroacetamide and trichloroacetamide, and many of the N-nitrosamines, were measured at concentrations greater than previously reported: up to 200 to 479 µg/L for the haloacetic acids, 56 to 736 µg/L for the haloacetamides and up to 1093 ng/L for some N-nitrosamines. The higher disinfectant residuals required to be employed in Australian pools, and poor pool management (e.g. of chlorine residual and pH) are likely factors contributing to these relatively high DBP concentrations. Where possible, the cytotoxicity values of the investigated DBPs were evaluated, with chloral hydrate representing over 90% of the total chronic cytotoxicity despite only representing up to 64% of the total molar DBP concentration. This study is the first report of bromodichloroacetaldehyde and bromochloroacetaldehyde in pools and is the first investigation of N-nitrosamines in a brominated pool. Furthermore, this work aids in understanding DBPs in both chlorine and bromine treated pools, the latter being the subject of only limited previous studies.


Asunto(s)
Desinfectantes/análisis , Monitoreo del Ambiente , Piscinas , Contaminantes Químicos del Agua/análisis , Acetamidas , Australia , Bromo , Cloraminas , Cloro , Cloroacetatos , Desinfección , Trihalometanos
10.
Chemosphere ; 220: 314-323, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30590297

RESUMEN

Nitrogenous classes of disinfection by-products (DBPs), such as haloacetamides (HAAms), haloacetonitriles (HANs) and halonitromethanes (HNMs), while generally present at lower concentrations in disinfected waters than carbonaceous DBPs, such as trihalomethanes or haloacetic acids, have been shown to be more detrimental to human health. While several methods have been shown to be suitable for the analysis of some nitrogenous DBPs (N-DBPs) in disinfected waters, many are unable to quantify HAAms, the most detrimental to health of these three N-DBP classes. Here, we report the first method for the simultaneous analysis of twenty-five N-DBPs (nine HANs, nine HNMs and seven HAAms) in disinfected waters using liquid-liquid extraction followed by gas chromatography-mass spectrometry. The use of a programmable temperature vaporiser injector minimises degradation of the thermally labile HNMs, while avoiding the concomitant decreases in HANs and HAAms which occur when using lower injector temperatures. Extraction parameters, including sample pH, solvent volume, salt addition and sample pre-concentration, were investigated to determine the optimal conditions across all target N-DBPs. Good detection limits were achieved for all analytes (0.8-1.7 µg L-1) and both laboratory and instrumental runtimes were significantly reduced compared to previous methods. The method was validated for the analysis of N-DBPs in drinking, swimming pool and spa waters, and concentrations of up to 41 µg L-1 of some N-DBPs were measured in some pools.


Asunto(s)
Acetamidas/análisis , Acetonitrilos/análisis , Etano/análogos & derivados , Cromatografía de Gases y Espectrometría de Masas/métodos , Nitrocompuestos/análisis , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos , Desinfectantes/química , Desinfección/métodos , Etano/análisis , Halogenación , Humanos
11.
Water Res ; 146: 10-18, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30223107

RESUMEN

The formation of odorous aldehydes and N-chloraldimines, and also nitriles, which are potentially hazardous to human health, was investigated in studies of the chlorination of amino acids (AAs) in both operational drinking water treatment plants and laboratory-based experiments. In the drinking water treatment plants studied, the concentration of total free AAs did not significantly change after treatment, even though good removal of DOC was observed. However, free AAs still contributed less than 3% of total nitrogen in the treated drinking waters, and no aldehydes, N-chloraldimines or nitriles of interest were detected in the treated waters, presumably due to the low concentrations of the precursor AAs in these water samples. Laboratory formation potential experiments showed that carboxylic acids can form from the degradation of aldehydes and nitriles. Volatile carboxylic acids could result in odour issues and some carboxylic acids may be of potential health concern. Therefore, carboxylic acids should also be considered as potential by-products of interest in distribution systems with long contact times of ≥ 7days. A higher proportion of nitrile formation, and promotion of carboxylic acid formation, was observed when the chlorine to AA ratio was greater than 4 compared to when this ratio was 2.8, indicating that the Cl:AA ratio is an important factor in DBP formation pathways. This suggests that results from laboratory formation studies undertaken at these low Cl:AA ratios cannot be directly applied to 'real' water systems, which typically have Cl:AA ratios that are orders of magnitude higher than 4. Laboratory formation potential experiments also showed that the short-term rate of formation of aldehydes and N-chloraldimines was reduced in the presence of ammonia, although formation over longer timescales (e.g. 7 days) was not significantly different between chlorination and chloramination experiments. Therefore, the use of chloramination instead of chlorination does not appear to reduce the formation of these by-products from AAs.


Asunto(s)
Desinfectantes , Contaminantes Químicos del Agua , Purificación del Agua , Aminoácidos , Cloraminas , Cloro , Desinfección , Halogenación , Odorantes
12.
Water Environ Res ; 89(12): 2103-2112, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-29166992

RESUMEN

Applicability of alum addition to wastewater sludge and biosolids produced from different treatment processes was evaluated as a means of odor reduction. Four water resource recovery facilities (WRRFs) were chosen for this study: two used mesophilic anaerobic digestion and two used oxidation ditch processes. The experiments were conducted on a laboratory scale and in all cases the alum was added prior to dewatering. This is the first report of the application of alum for odor reduction in oxidation ditch processes. Alum addition was effective in reducing odors in anaerobically digested biosolids. Addition of 4% alum to anaerobically digested liquid biosolids prior to dewatering resulted in a 60% reduction in the peak odor concentration in the laboratory dewatered cake, relative to the control sample. Alum addition did not reduce odors in dewatered sludge from oxidation ditch processes.


Asunto(s)
Compuestos de Alumbre/química , Odorantes/prevención & control , Aguas del Alcantarillado/química , Eliminación de Residuos Líquidos/métodos , Aguas Residuales/química
13.
J Environ Sci (China) ; 58: 102-115, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28774599

RESUMEN

We studied the formation of four nitrogenous DBPs (N-DBPs) classes (haloacetonitriles, halonitromethanes, haloacetamides, and N-nitrosamines), as well as trihalomethanes and total organic halogen (TOX), after chlorination or chloramination of source waters. We also evaluated the relative and additive toxicity of N-DBPs and water treatment options for minimisation of N-DBPs. The formation of halonitromethanes, haloacetamides, and N-nitrosamines was higher after chloramination and positively correlated with dissolved organic nitrogen or total nitrogen. N-DBPs were major contributors to the toxicity of both chlorinated and chloraminated waters. The strong correlation between bromide concentration and the overall calculated DBP additive toxicity for both chlorinated and chloraminated source waters demonstrated that formation of brominated haloacetonitriles was the main contributor to toxicity. Ozone-biological activated carbon treatment was not effective in removing N-DBP precursors. The occurrence and formation of N-DBPs should be investigated on a case-by-case basis, especially where advanced water treatment processes are being considered to minimise their formation in drinking waters, and where chloramination is used for final disinfection.


Asunto(s)
Bromuros/análisis , Desinfectantes/análisis , Compuestos de Nitrógeno/análisis , Contaminantes Químicos del Agua/análisis , Contaminación Química del Agua/prevención & control , Australia , Desinfección , Halogenación , Trihalometanos/análisis , Purificación del Agua
14.
J Environ Sci (China) ; 58: 19-50, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28774608

RESUMEN

Disinfection of water for human use is essential to protect against microbial disease; however, disinfection also leads to formation of disinfection by-products (DBPs), some of which are of health concern. From a chemical perspective, swimming pools are a complex matrix, with continual addition of a wide range of natural and anthropogenic chemicals via filling waters, disinfectant addition, pharmaceuticals and personal care products and human body excretions. Natural organic matter, trace amounts of DBPs and chlorine or chloramines may be introduced by the filling water, which is commonly disinfected distributed drinking water. Chlorine and/or bromine is continually introduced via the addition of chemical disinfectants to the pool. Human body excretions (sweat, urine and saliva) and pharmaceuticals and personal care products (sunscreens, cosmetics, hair products and lotions) are introduced by swimmers. High addition of disinfectant leads to a high formation of DBPs from reaction of some of the chemicals with the disinfectant. Swimming pool air is also of concern as volatile DBPs partition into the air above the pool. The presence of bromine leads to the formation of a wide range of bromo- and bromo/chloro-DBPs, and Br-DBPs are more toxic than their chlorinated analogues. This is particularly important for seawater-filled pools or pools using a bromine-based disinfectant. This review summarises chemical contaminants and DBPs in swimming pool waters, as well as in the air above pools. Factors that have been found to affect DBP formation in pools are discussed. The impact of the swimming pool environment on human health is reviewed.


Asunto(s)
Desinfectantes/análisis , Desinfección/métodos , Piscinas , Cloraminas/análisis , Cloro/análisis , Halogenación
15.
J Environ Sci (China) ; 58: 2-18, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28774610

RESUMEN

This paper is a critical review of current knowledge of organic chloramines in water systems, including their formation, stability, toxicity, analytical methods for detection, and their impact on drinking water treatment and quality. The term organic chloramines may refer to any halogenated organic compounds measured as part of combined chlorine (the difference between the measured free and total chlorine concentrations), and may include N-chloramines, N-chloramino acids, N-chloraldimines and N-chloramides. Organic chloramines can form when dissolved organic nitrogen or dissolved organic carbon react with either free chlorine or inorganic chloramines. They are potentially harmful to humans and may exist as an intermediate for other disinfection by-products. However, little information is available on the formation or occurrence of organic chloramines in water due to a number of challenges. One of the biggest challenges for the identification and quantification of organic chloramines in water systems is the lack of appropriate analytical methods. In addition, many of the organic chloramines that form during disinfection are unstable, which results in difficulties in sampling and detection. To date research has focussed on the study of organic monochloramines. However, given that breakpoint chlorination is commonly undertaken in water treatment systems, the formation of organic dichloramines should also be considered. Organic chloramines can be formed from many different precursors and pathways. Therefore, studying the occurrence of their precursors in water systems would enable better prediction and management of their formation.


Asunto(s)
Cloraminas/análisis , Desinfectantes/análisis , Purificación del Agua/métodos , Cloro , Desinfección/métodos , Agua Potable/química , Contaminantes Químicos del Agua/análisis
16.
J Environ Sci (China) ; 58: 340-348, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28774625

RESUMEN

Determination of halogen-specific total organic halogen (TOX) is vital for studies of disinfection of waters containing bromide, since total organic bromine (TOBr) is likely to be more problematic than total organic chlorine. Here, we present further halogen-specific TOX method optimisation and validation, focusing on measurement of TOBr. The optimised halogen-specific TOX method was validated based on the recovery of model compounds covering different classes of disinfection by-products (haloacetic acids, haloacetonitriles, halophenols and halogenated benzenes) and the recovery of total bromine (mass balance of TOBr and bromide concentrations) during disinfection of waters containing dissolved organic matter and bromide. The validation of a halogen-specific TOX method based on the mass balance of total bromine has not previously been reported. Very good recoveries of organic halogen from all model compounds were obtained, indicating high or complete conversion of all organic halogen in the model compound solution through to halide in the absorber solution for ion chromatography analysis. The method was also successfully applied to monitor conversion of bromide to TOBr in a groundwater treatment plant. An excellent recovery (101%) of total bromine was observed from the raw water to the post-chlorination stage. Excellent recoveries of total bromine (92%-95%) were also obtained from chlorination of a synthetic water containing dissolved organic matter and bromide, demonstrating the validity of the halogen-specific TOX method for TOBr measurement. The halogen-specific TOX method is an important tool to monitor and better understand the formation of halogenated organic compounds, in particular brominated organic compounds, in drinking water systems.


Asunto(s)
Bromo/análisis , Contaminantes Químicos del Agua/análisis , Bromuros , Desinfectantes/análisis , Desinfección/métodos , Halógenos/análisis , Compuestos Orgánicos/análisis , Purificación del Agua/métodos
17.
Environ Sci Technol ; 51(9): 5146-5155, 2017 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-28358483

RESUMEN

During chlorination of bromide-containing waters, a significant formation of brominated disinfection byproducts is expected. This is of concern because Br-DBPs are generally more toxic than their chlorinated analogues. In this study, synthetic water samples containing dissolved organic matter (DOM) extracts and bromide were treated under various disinfection scenarios to elucidate the mechanisms of Br-DBP formation. The total concentration of Br-DBPs was measured as adsorbable organic bromine (AOBr). A portion of the bromine (HOBr) was found to react with DOM via electrophilic substitution (≤40%), forming AOBr, and the remaining HOBr reacted with DOM via electron transfer with a reduction of HOBr to bromide (≥60%). During chlorination, the released bromide is reoxidized (recycled) by chlorine to HOBr, leading to further electrophilic substitution of unaltered DOM sites and chlorinated DOM moieties. This leads to an almost complete bromine incorporation to DOM (≥87%). The type of DOM (3.06 ≤ SUVA254 ≤ 4.85) is not affecting this process, as long as the bromine-reactive DOM sites are in excess and a sufficient chlorine exposure is achieved. When most reactive sites were consumed by chlorine, Cl-substituted functional groups (Cl-DOM) are reacting with HOBr by direct bromination leading to Br-Cl-DOM and by bromine substitution of chlorine leading to Br-DOM. The latter finding was supported by hexachlorobenzene as a model compound from which bromoform was formed during HOBr treatment. To better understand the experimental findings, a conceptual kinetic model allowing to assess the contribution of each AOBr pathway was developed. A simulation of distribution system conditions with a disinfectant residual of 1 mgC2 L-1 showed complete conversion of Br- to AOBr, with about 10% of the AOBr formed through chlorine substitution by bromine.


Asunto(s)
Bromuros/química , Bromo/química , Desinfección , Halogenación , Agua/química , Contaminantes Químicos del Agua , Purificación del Agua
18.
Environ Sci Technol ; 51(9): 4870-4876, 2017 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-28296395

RESUMEN

Chlorination of amino acids can result in the formation of organic monochloramines or organic dichloramines, depending on the chlorine to amino acid ratio (Cl:AA). After formation, organic chloramines degrade into aldehydes, nitriles and N-chloraldimines. In this paper, the formation of organic chloramines from chlorination of lysine, tyrosine and valine were investigated. Chlorination of tyrosine and lysine demonstrated that the presence of a reactive secondary group can increase the Cl:AA ratio required for the formation of N,N-dichloramines, and potentially alter the reaction pathways between chlorine and amino acids, resulting in the formation of unexpected byproducts. In a detailed investigation, we report rate constants for all reactions in the chlorination of valine, for the first time, using experimental results and modeling. At Cl:AA = 2.8, the chlorine was found to first react quickly with valine (5.4 × 104 M-1 s-1) to form N-monochlorovaline, with a slower subsequent reaction with N-monochlorovaline to form N,N-dichlorovaline (4.9 × 102 M-1 s-1), although some N-monochlorovaline degraded into isobutyraldehyde (1.0 × 10-4 s-1). The N,N-dichlorovaline then competitively degraded into isobutyronitrile (1.3 × 10-4 s-1) and N-chloroisobutyraldimine (1.2 × 10-4 s-1). In conventional drinking water disinfection, N-chloroisobutyraldimine can potentially be formed in concentrations higher than its odor threshold concentration, resulting in aesthetic challenges and an unknown health risk.


Asunto(s)
Aminoácidos/química , Halogenación , Cloraminas/química , Cloro/química , Desinfección , Purificación del Agua
19.
Environ Monit Assess ; 188(9): 518, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27523603

RESUMEN

The presence of nitrogenous disinfection by-products (N-DBPs) in drinking water supplies is a public health concern, particularly since some N-DBPs have been reported to be more toxic than the regulated trihalomethanes and haloacetic acids. In this paper, a comprehensive evaluation of the presence of N-DBPs in 10 drinking water supply systems in Western Australia is presented. A suite of 28 N-DBPs, including N-nitrosamines, haloacetonitriles (HANs), haloacetamides (HAAms) and halonitromethanes (HNMs), were measured and evaluated for relationships with bulk parameters in the waters before disinfection. A number of N-DBPs were frequently detected in disinfected waters, although at generally low concentrations (<10 ng/L for N-nitrosamines and <10 µg/L for other N-DBPs) and below health guideline values where they exist. While there were no clear relationships between N-DBP formation and organic nitrogen in the pre-disinfection water, N-DBP concentrations were significantly correlated with dissolved organic carbon (DOC) and ammonia, and these, in addition to high bromide in one of the waters, led to elevated concentrations of brominated HANs (26.6 µg/L of dibromoacetonitrile). There were significant differences in the occurrence of all classes of N-DBPs between chlorinated and chloraminated waters, except for HNMs, which were detected at relatively low concentrations in both water types. Trends observed in one large distribution system suggest that N-DBPs can continue to form or degrade within distribution systems, and redosing of disinfectant may cause further by-product formation.


Asunto(s)
Acetonitrilos/análisis , Desinfectantes/química , Desinfección , Agua Potable/análisis , Nitrosaminas/análisis , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos , Cloraminas/química , Cloro/química , Agua Potable/normas , Monitoreo del Ambiente/métodos , Trihalometanos/análisis , Abastecimiento de Agua , Australia Occidental
20.
Water Res ; 93: 65-73, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-26896824

RESUMEN

Although organic chloramines are known to form during the disinfection of drinking water with chlorine, little information is currently available on their occurrence or toxicity. In a recent in vitro study, some organic chloramines (e.g. N-chloroglycine) were found to be cytotoxic and genotoxic even at micromolar concentrations. In this paper, the formation and stability of 21 different organic chloramines, from chlorination of simple amines and amino acids, were studied, and the competition between 20 amino acids during chlorination was also investigated. For comparison, chlorination of two amides was also conducted. The formation and degradation of selected organic chloramines were measured using either direct UV spectroscopic or colorimetric detection. Although cysteine, methionine and tryptophan were the most reactive amino acids towards chlorination, they did not form organic chloramines at the chlorine to precursor molar ratios that were tested. Only 6 out of the 21 organic chloramines formed had a half-life of more than 3 h, although this group included all organic chloramines formed from amines. A health risk assessment relating stability and reactivity data from this study to toxicity and precursor abundance data from the literature indicated that only N-chloroglycine is likely to be of concern due to its stability, toxicity and abundance in water. However, given the stability of organic chloramines formed from amines, more information about the toxicity and precursor abundance for these chloramines is desirable.


Asunto(s)
Aminoácidos/química , Cloraminas/química , Agua Potable/química , Contaminantes Químicos del Agua/química , Cloraminas/aislamiento & purificación , Cloro/química , Cisteína/química , Desinfección/métodos , Agua Potable/análisis , Glicina/análogos & derivados , Glicina/química , Glicina/aislamiento & purificación , Halogenación , Humanos , Metionina/química , Salud Pública/métodos , Medición de Riesgo/métodos , Espectrofotometría Ultravioleta , Triptófano/química , Contaminantes Químicos del Agua/aislamiento & purificación , Purificación del Agua/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...