Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Antimicrob Agents Chemother ; 60(3): 1464-75, 2015 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-26711771

RESUMEN

Imidazopyridazine compounds are potent, ATP-competitive inhibitors of calcium-dependent protein kinase 1 (CDPK1) and of Plasmodium falciparum parasite growth in vitro. Here, we show that these compounds can be divided into two classes depending on the nature of the aromatic linker between the core and the R2 substituent group. Class 1 compounds have a pyrimidine linker and inhibit parasite growth at late schizogony, whereas class 2 compounds have a nonpyrimidine linker and inhibit growth in the trophozoite stage, indicating different modes of action for the two classes. The compounds also inhibited cyclic GMP (cGMP)-dependent protein kinase (PKG), and their potency against this enzyme was greatly reduced by substitution of the enzyme's gatekeeper residue at the ATP binding site. The effectiveness of the class 1 compounds against a parasite line expressing the modified PKG was also substantially reduced, suggesting that these compounds kill the parasite primarily through inhibition of PKG rather than CDPK1. HSP90 was identified as a binding partner of class 2 compounds, and a representative compound bound to the ATP binding site in the N-terminal domain of HSP90. Reducing the size of the gatekeeper residue of CDPK1 enabled inhibition of the enzyme by bumped kinase inhibitors; however, a parasite line expressing the modified enzyme showed no change in sensitivity to these compounds. Taken together, these findings suggest that CDPK1 may not be a suitable target for further inhibitor development and that the primary mechanism through which the imidazopyridazines kill parasites is by inhibition of PKG or HSP90.


Asunto(s)
Antimaláricos/farmacología , Plasmodium falciparum/efectos de los fármacos , Proteínas Protozoarias/antagonistas & inhibidores , Antimaláricos/química , Línea Celular , Proteínas Quinasas Dependientes de GMP Cíclico/antagonistas & inhibidores , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Imidazoles/química , Imidazoles/farmacología , Simulación del Acoplamiento Molecular , Terapia Molecular Dirigida/métodos , Plasmodium falciparum/crecimiento & desarrollo , Plasmodium falciparum/metabolismo , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Quinasas/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Piridazinas/química , Piridazinas/farmacología
2.
DNA Repair (Amst) ; 31: 19-28, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25956741

RESUMEN

ERCC1-XPF is a structure-specific endonuclease that is required for the repair of DNA lesions, generated by the widely used platinum-containing cancer chemotherapeutics such as cisplatin, through the Nucleotide Excision Repair and Interstrand Crosslink Repair pathways. Based on mouse xenograft experiments, where ERCC1-deficient melanomas were cured by cisplatin therapy, we proposed that inhibition of ERCC1-XPF could enhance the effectiveness of platinum-based chemotherapy. Here we report the identification and properties of inhibitors against two key targets on ERCC1-XPF. By targeting the ERCC1-XPF interaction domain we proposed that inhibition would disrupt the ERCC1-XPF heterodimer resulting in destabilisation of both proteins. Using in silico screening, we identified an inhibitor that bound to ERCC1-XPF in a biophysical assay, reduced the level of ERCC1-XPF complexes in ovarian cancer cells, inhibited Nucleotide Excision Repair and sensitised melanoma cells to cisplatin. We also utilised high throughput and in silico screening to identify the first reported inhibitors of the other key target, the XPF endonuclease domain. We demonstrate that two of these compounds display specificity in vitro for ERCC1-XPF over two other endonucleases, bind to ERCC1-XPF, inhibit Nucleotide Excision Repair in two independent assays and specifically sensitise Nucleotide Excision Repair-proficient, but not Nucleotide Excision Repair-deficient human and mouse cells to cisplatin.


Asunto(s)
Reparación del ADN/efectos de los fármacos , Proteínas de Unión al ADN/genética , Resistencia a Antineoplásicos , Endonucleasas/genética , Dominio Catalítico/efectos de los fármacos , Línea Celular Tumoral , Cisplatino/farmacología , Proteínas de Unión al ADN/antagonistas & inhibidores , Proteínas de Unión al ADN/metabolismo , Endonucleasas/antagonistas & inhibidores , Endonucleasas/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Ensayos Analíticos de Alto Rendimiento , Humanos , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Reproducibilidad de los Resultados , Análisis de Secuencia de ADN
3.
Antimicrob Agents Chemother ; 58(10): 6032-43, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25070106

RESUMEN

PfCDPK1 is a Plasmodium falciparum calcium-dependent protein kinase, which has been identified as a potential target for novel antimalarial chemotherapeutics. In order to further investigate the role of PfCDPK1, we established a high-throughput in vitro biochemical assay and used it to screen a library of over 35,000 small molecules. Five chemical series of inhibitors were initially identified from the screen, from which series 1 and 2 were selected for chemical optimization. Indicative of their mechanism of action, enzyme inhibition by these compounds was found to be sensitive to both the ATP concentration and substitution of the amino acid residue present at the "gatekeeper" position at the ATP-binding site of the enzyme. Medicinal chemistry efforts led to a series of PfCDPK1 inhibitors with 50% inhibitory concentrations (IC50s) below 10 nM against PfCDPK1 in a biochemical assay and 50% effective concentrations (EC50s) less than 100 nM for inhibition of parasite growth in vitro. Potent inhibition was combined with acceptable absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties and equipotent inhibition of Plasmodium vivax CDPK1. However, we were unable to correlate biochemical inhibition with parasite growth inhibition for this series overall. Inhibition of Plasmodium berghei CDPK1 correlated well with PfCDPK1 inhibition, enabling progression of a set of compounds to in vivo evaluation in the P. berghei rodent model for malaria. These chemical series have potential for further development as inhibitors of CDPK1.


Asunto(s)
Antimaláricos/farmacología , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/enzimología , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Quinasas/metabolismo , Proteínas Protozoarias/metabolismo , Animales , Antimaláricos/uso terapéutico , Malaria/tratamiento farmacológico , Ratones , Plasmodium berghei/efectos de los fármacos , Plasmodium berghei/patogenicidad , Plasmodium falciparum/patogenicidad , Plasmodium vivax/efectos de los fármacos , Plasmodium vivax/patogenicidad , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Protozoarias/antagonistas & inhibidores
4.
J Med Chem ; 57(8): 3570-87, 2014 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-24689770

RESUMEN

A structure-guided design approach using a homology model of Plasmodium falciparum calcium-dependent protein kinase 1 (PfCDPK1) was used to improve the potency of a series of imidazopyridazine inhibitors as potential antimalarial agents. This resulted in high affinity compounds with PfCDPK1 enzyme IC50 values less than 10 nM and in vitro P. falciparum antiparasite EC50 values down to 12 nM, although these compounds did not have suitable ADME properties to show in vivo efficacy in a mouse model. Structural modifications designed to address the ADME issues, in particular permeability, were initially accompanied by losses in antiparasite potency, but further optimization allowed a good balance in the compound profile to be achieved. Upon testing in vivo in a murine model of efficacy against malaria, high levels of compound exposure relative to their in vitro activities were achieved, and the modest efficacy that resulted raises questions about the level of effect that is achievable through the targeting of PfCDPK1.


Asunto(s)
Antimaláricos/síntesis química , Plasmodium falciparum/efectos de los fármacos , Inhibidores de Proteínas Quinasas/síntesis química , Proteínas Protozoarias/antagonistas & inhibidores , Piridazinas/síntesis química , Animales , Antimaláricos/farmacología , Ratones , Plasmodium falciparum/enzimología , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Quinasas/química , Proteínas Protozoarias/química , Piridazinas/farmacología , Relación Estructura-Actividad
5.
Bioorg Med Chem Lett ; 23(21): 6019-24, 2013 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-24035097

RESUMEN

The structural diversity and SAR in a series of imidazopyridazine inhibitors of Plasmodium falciparum calcium dependent protein kinase 1 (PfCDPK1) has been explored and extended. The opportunity to further improve key ADME parameters by means of lowering logD was identified, and this was achieved by replacement of a six-membered (hetero)aromatic linker with a pyrazole. A short SAR study has delivered key examples with useful in vitro activity and ADME profiles, good selectivity against a human kinase panel and improved levels of lipophilic ligand efficiency. These new analogues thus provide a credible additional route to further development of the series.


Asunto(s)
Antimaláricos/química , Antimaláricos/farmacología , Plasmodium falciparum/enzimología , Proteínas Protozoarias/antagonistas & inhibidores , Piridazinas/química , Piridazinas/farmacología , Humanos , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/parasitología , Plasmodium falciparum/efectos de los fármacos , Proteínas Quinasas/metabolismo , Proteínas Protozoarias/metabolismo
6.
Bioorg Med Chem Lett ; 23(10): 3064-9, 2013 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-23570789

RESUMEN

A series of imidazopyridazines which are potent inhibitors of Plasmodium falciparum calcium-dependent protein kinase 1 (PfCDPK1) was identified from a high-throughput screen against the isolated enzyme. Subsequent exploration of the SAR and optimisation has yielded leading members which show promising in vitro anti-parasite activity along with good in vitro ADME and selectivity against human kinases. Initial in vivo testing has revealed good oral bioavailability in a mouse PK study and modest in vivo efficacy in a Plasmodium berghei mouse model of malaria.


Asunto(s)
Antimaláricos/farmacología , Malaria/tratamiento farmacológico , Plasmodium falciparum/enzimología , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Protozoarias/antagonistas & inhibidores , Piridazinas/farmacología , Animales , Antimaláricos/administración & dosificación , Antimaláricos/química , Antimaláricos/uso terapéutico , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Ensayos Analíticos de Alto Rendimiento , Malaria/parasitología , Ratones , Modelos Moleculares , Estructura Molecular , Pruebas de Sensibilidad Parasitaria , Plasmodium falciparum/efectos de los fármacos , Inhibidores de Proteínas Quinasas/administración & dosificación , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Quinasas/metabolismo , Proteínas Protozoarias/metabolismo , Piridazinas/administración & dosificación , Piridazinas/química , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA