Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 278
Filtrar
1.
Cancers (Basel) ; 16(9)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38730612

RESUMEN

High-risk human papillomaviruses (HPVs) are the main cause of cervical, oropharyngeal, and anogenital cancers, which are all treated with definitive chemoradiation therapy when locally advanced. HPV proteins are known to exploit the host DNA damage response to enable viral replication and the epithelial differentiation protocol. This has far-reaching consequences for the host genome, as the DNA damage response is critical for the maintenance of genomic stability. HPV+ cells therefore have increased DNA damage, leading to widespread genomic instability, a hallmark of cancer, which can contribute to tumorigenesis. Following transformation, high-risk HPV oncoproteins induce chromosomal instability, or chromosome missegregation during mitosis, which is associated with a further increase in DNA damage, particularly due to micronuclei and double-strand break formation. Thus, HPV induces significant DNA damage and activation of the DNA damage response in multiple contexts, which likely affects radiation sensitivity and efficacy. Here, we review how HPV activates the DNA damage response, how it induces chromosome missegregation and micronuclei formation, and discuss how these factors may affect radiation response. Understanding how HPV affects the DNA damage response in the context of radiation therapy may help determine potential mechanisms to improve therapeutic response.

2.
Trials ; 25(1): 281, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38671497

RESUMEN

BACKGROUND: It is crucial to include a wide range of the population in clinical trials for the outcome to be applicable in real-world settings. Existing literature indicates that under-served groups, including disabled people, have been excluded from participating in clinical trials without justification. Exclusion from clinical trials exacerbates disparities in healthcare and diminishes the benefits for excluded populations. Therefore, this study was conducted to investigate potential obstacles that prevent disabled people from participating in clinical trials in the United Kingdom (UK). METHODS: The study was carried out through an explanatory sequential mixed methods design. The Imperial Clinical Trials Unit devised and implemented an online questionnaire-based survey (with open/closed-ended questions) and an online focus group discussion. The target population were disabled people, family members/carers of disabled people and staff involved in clinical trials, whereupon the sample was recruited by convenience sampling methods via posters and emails through various networks. The Qualtrics XM survey system was used as the host platform for the online survey, and Microsoft Teams was used for an online focus group discussion. The focus group discussion was conducted to gain a deeper understanding of the themes identified from the survey responses. We analysed responses to the survey via descriptive analysis and used thematic analysis to synthesise the free-text answers from the survey and focus group discussion. RESULTS: We received 45 responses to the survey questionnaire and 5 disabled people took part in a focus group discussion. Our findings highlighted the differences between the perspectives of researchers and those "being researched" and different types of barriers experienced by disabled people: opportunity barriers (inadequate recruitment strategy and ambiguous eligibility criteria), awareness barriers (perception of disability) and acceptance/refusal barriers (available support and adjustment, and sharing of trial results). CONCLUSION: Our findings support perspectives drawn from the Ford Framework regarding the need to consider all barriers, not just up to the point of enrolment into trials but also beyond the point of inclusion in clinical trials. We support calls for the introduction of legislation on including disabled people in clinical trials, implementation of industry/community-wide participatory approaches and the development of guidelines, a combined public-private approach.


Asunto(s)
Ensayos Clínicos como Asunto , Personas con Discapacidad , Grupos Focales , Selección de Paciente , Humanos , Masculino , Femenino , Persona de Mediana Edad , Adulto , Encuestas y Cuestionarios , Reino Unido , Sujetos de Investigación/psicología , Conocimientos, Actitudes y Práctica en Salud , Actitud del Personal de Salud , Investigadores/psicología , Anciano , Proyectos de Investigación
3.
ACS Appl Mater Interfaces ; 16(13): 15832-15846, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38518375

RESUMEN

Chagas disease (CD) (American trypanosomiasis caused by Trypanosoma cruzi) is a parasitic disease endemic in 21 countries in South America, with increasing global spread. When administered late in the infection, the current antiparasitic drugs do not prevent the onset of cardiac illness leading to chronic Chagasic cardiomyopathy. Therefore, new therapeutic vaccines or immunotherapies are under development using multiple platforms. In this study, we assessed the feasibility of developing an mRNA-based therapeutic CD vaccine targeting two known T. cruzi vaccine antigens (Tc24─a flagellar antigen and ASP-2─an amastigote antigen). We present the mRNA engineering steps, preparation, and stability of the lipid nanoparticles and evaluation of their uptake by dendritic cells, as well as their biodistribution in c57BL/J mice. Furthermore, we assessed the immunogenicity and efficacy of two mRNA-based candidates as monovalent and bivalent vaccine strategies using an in vivo chronic mouse model of CD. Our results show several therapeutic benefits, including reductions in parasite burdens and cardiac inflammation, with each mRNA antigen, especially with the mRNA encoding Tc24, and Tc24 in combination with ASP-2. Therefore, our findings demonstrate the potential of mRNA-based vaccines as a therapeutic option for CD and highlight the opportunities for developing multivalent vaccines using this approach.


Asunto(s)
Enfermedad de Chagas , Vacunas Antiprotozoos , Ratones , Animales , ARN , Distribución Tisular , Enfermedad de Chagas/prevención & control , Antígenos de Protozoos/genética , ARN Mensajero , Tecnología
4.
Lancet ; 403(10432): 1164-1175, 2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38402887

RESUMEN

BACKGROUND: Novel oral poliovirus vaccine type 2 (nOPV2) has been engineered to improve the genetic stability of Sabin oral poliovirus vaccine (OPV) and reduce the emergence of circulating vaccine-derived polioviruses. This trial aimed to provide key safety and immunogenicity data required for nOPV2 licensure and WHO prequalification. METHODS: This phase 3 trial recruited infants aged 18 to <52 weeks and young children aged 1 to <5 years in The Gambia. Infants randomly assigned to receive one or two doses of one of three lots of nOPV2 or one lot of bivalent OPV (bOPV). Young children were randomised to receive two doses of nOPV2 lot 1 or bOPV. The primary immunogenicity objective was to assess lot-to-lot equivalence of the three nOPV2 lots based on one-dose type 2 poliovirus neutralising antibody seroconversion rates in infants. Equivalence was declared if the 95% CI for the three pairwise rate differences was within the -10% to 10% equivalence margin. Tolerability and safety were assessed based on the rates of solicited adverse events to 7 days, unsolicited adverse events to 28 days, and serious adverse events to 3 months post-dose. Stool poliovirus excretion was examined. The trial was registered as PACTR202010705577776 and is completed. FINDINGS: Between February and October, 2021, 2345 infants and 600 young children were vaccinated. 2272 (96·9%) were eligible for inclusion in the post-dose one per-protocol population. Seroconversion rates ranged from 48·9% to 49·2% across the three lots. The minimum lower bound of the 95% CIs for the pairwise differences in seroconversion rates between lots was -5·8%. The maximum upper bound was 5·4%. Equivalence was therefore shown. Of those seronegative at baseline, 143 (85·6%) of 167 (95% CI 79·4-90·6) infants and 54 (83·1%) of 65 (71·7-91·2) young children seroconverted over the two-dose nOPV2 schedule. The post-two-dose seroprotection rates, including participants who were both seronegative and seropositive at baseline, were 604 (92·9%) of 650 (95% CI 90·7-94·8) in infants and 276 (95·5%) of 289 (92·4-97·6) in young children. No safety concerns were identified. 7 days post-dose one, 78 (41·7%) of 187 (95% CI 34·6-49·1) infants were excreting the type 2 poliovirus. INTERPRETATION: nOPV2 was immunogenic and safe in infants and young children in The Gambia. The data support the licensure and WHO prequalification of nOPV2. FUNDING: Bill & Melinda Gates Foundation.


Asunto(s)
Poliomielitis , Poliovirus , Preescolar , Humanos , Lactante , Anticuerpos Antivirales , Formación de Anticuerpos , Gambia , Esquemas de Inmunización , Poliomielitis/epidemiología , Vacuna Antipolio Oral
5.
Nature ; 626(8001): 979-983, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38232945

RESUMEN

The recent inference of sulfur dioxide (SO2) in the atmosphere of the hot (approximately 1,100 K), Saturn-mass exoplanet WASP-39b from near-infrared JWST observations1-3 suggests that photochemistry is a key process in high-temperature exoplanet atmospheres4. This is because of the low (<1 ppb) abundance of SO2 under thermochemical equilibrium compared with that produced from the photochemistry of H2O and H2S (1-10 ppm)4-9. However, the SO2 inference was made from a single, small molecular feature in the transmission spectrum of WASP-39b at 4.05 µm and, therefore, the detection of other SO2 absorption bands at different wavelengths is needed to better constrain the SO2 abundance. Here we report the detection of SO2 spectral features at 7.7 and 8.5 µm in the 5-12-µm transmission spectrum of WASP-39b measured by the JWST Mid-Infrared Instrument (MIRI) Low Resolution Spectrometer (LRS)10. Our observations suggest an abundance of SO2 of 0.5-25 ppm (1σ range), consistent with previous findings4. As well as SO2, we find broad water-vapour absorption features, as well as an unexplained decrease in the transit depth at wavelengths longer than 10 µm. Fitting the spectrum with a grid of atmospheric forward models, we derive an atmospheric heavy-element content (metallicity) for WASP-39b of approximately 7.1-8.0 times solar and demonstrate that photochemistry shapes the spectra of WASP-39b across a broad wavelength range.

6.
Lancet Reg Health West Pac ; 44: 100986, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38204497

RESUMEN

Background: In June 2018, a type 1 circulating vaccine-derived poliovirus (cVDPV1) outbreak was declared in Papua New Guinea (PNG), resulting in a total of 26 paralytic confirmed cases. Eight vaccination campaign rounds with bivalent oral poliovirus vaccine (bOPV) were carried out in response. Prevalence of neutralizing polio antibodies in children was assessed two years after the outbreak response was completed. Methods: We conducted a cross-sectional serological survey among children aged 6 months-10 years selected from six provinces in PNG to evaluate seroprevalence of neutralizing polio antibodies to the three poliovirus serotypes and analyse sociodemographic risk factors. Findings: We included 984 of 1006 enrolled children in the final analysis. The seroprevalence of neutralizing polio antibodies for serotype 1, 2 and 3 was 98.3% (95% CI: 97.4-98.9), 63.1% (95% CI: 60.1-66.1) and 95.0% (95% CI: 93.6-96.3), respectively. Children <1 year had significantly lower type 1 seroprevalence compared to older children (p < 0.001); there were no significant differences in seroprevalence among provinces. Interpretation: PNG successfully interrupted transmission of cVDPV1 with several high coverage bOPV campaigns and seroprevalence remained high after two years. The emergence of cVDPV strains underscores the importance of maintaining high levels of routine immunization coverage and effective surveillance systems for early detection. Funding: World Health Organization through a Rotary International IPPC grant.

7.
Clin Infect Dis ; 78(2): 453-456, 2024 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-37805935

RESUMEN

Chagas disease (CD), caused by Trypanosoma cruzi, is underdiagnosed in the United States. Improved screening strategies are needed, particularly for people at risk for life-threatening sequelae of CD, including people with human immunodeficiency virus (HIV, PWH). Here we report results of a CD screening strategy applied at a large HIV clinic serving an at-risk population.


Asunto(s)
Enfermedad de Chagas , Infecciones por VIH , Trypanosoma cruzi , Humanos , Estados Unidos/epidemiología , VIH , Enfermedad de Chagas/diagnóstico , Enfermedad de Chagas/epidemiología , Enfermedad de Chagas/complicaciones , Infecciones por VIH/diagnóstico , Infecciones por VIH/epidemiología , Infecciones por VIH/complicaciones
8.
Neuron ; 111(23): 3710-3715, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37944519

RESUMEN

Sharing human brain data can yield scientific benefits, but because of various disincentives, only a fraction of these data is currently shared. We profile three successful data-sharing experiences from the NIH BRAIN Initiative Research Opportunities in Humans (ROH) Consortium and demonstrate benefits to data producers and to users.


Asunto(s)
Encéfalo , Neurofisiología , Humanos , Difusión de la Información
9.
PLoS Negl Trop Dis ; 17(11): e0011519, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37988389

RESUMEN

BACKGROUND: Chagas disease, chronic infection with Trypanosoma cruzi, mainly manifests as cardiac disease. However, the liver is important for both controlling parasite burdens and metabolizing drugs. Notably, high doses of anti-parasitic drug benznidazole (BNZ) causes liver damage. We previously showed that combining low dose BNZ with a prototype therapeutic vaccine is a dose sparing strategy that effectively reduced T. cruzi induced cardiac damage. However, the impact of this treatment on liver health is unknown. Therefore, we evaluated several markers of liver health after treatment with low dose BNZ plus the vaccine therapy in comparison to a curative dose of BNZ. METHODOLOGY: Female BALB/c mice were infected with a bioluminescent T. cruzi H1 clone for approximately 70 days, then randomly divided into groups of 15 mice each. Mice were treated with a 25mg/kg BNZ, 25µg Tc24-C4 protein/ 5µg E6020-SE (Vaccine), 25mg/kg BNZ followed by vaccine, or 100mg/kg BNZ (curative dose). At study endpoints we evaluated hepatomegaly, parasite burden by quantitative PCR, cellular infiltration by histology, and expression of B-cell translocation gene 2(BTG2) and Peroxisome proliferator-activated receptor alpha (PPARα) by RT-PCR. Levels of alanine transaminase (ALT), aspartate transaminase (AST), alkaline phosphatase (ALP) and lactate dehydrogenase (LDH) were quantified from serum. RESULTS: Curative BNZ treatment significantly reduced hepatomegaly, liver parasite burdens, and the quantity of cellular infiltrate, but significantly elevated serum levels of ALT, AST, and LDH. Low BNZ plus vaccine did not significantly affect hepatomegaly, parasite burdens or the quantity of cellular infiltrate, but only elevated ALT and AST. Low dose BNZ significantly decreased expression of both BTG2 and PPARα, and curative BNZ reduced expression of BTG2 while low BNZ plus vaccine had no impact. CONCLUSIONS: These data confirm toxicity associated with curative doses of BNZ and suggest that while dose sparing low BNZ plus vaccine treatment does not reduce parasite burdens, it better preserves liver health.


Asunto(s)
Enfermedad de Chagas , Nitroimidazoles , Tripanocidas , Trypanosoma cruzi , Vacunas , Femenino , Animales , Ratones , Hepatomegalia/tratamiento farmacológico , Infección Persistente , PPAR alfa/farmacología , PPAR alfa/uso terapéutico , Enfermedad de Chagas/tratamiento farmacológico , Enfermedad de Chagas/prevención & control , Enfermedad de Chagas/parasitología , Tripanocidas/farmacología
10.
mBio ; : e0257221, 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37882563

RESUMEN

Intracellular innate immunity involves co-evolved antiviral restriction factors that specifically inhibit infecting viruses. Studying these restrictions has increased our understanding of viral replication, host-pathogen interactions, and pathogenesis, and represent potential targets for novel antiviral therapies. Lentiviral restriction 2 (Lv2) was identified as an unmapped early-phase restriction of HIV-2 and later shown to also restrict HIV-1 and simian immunodeficiency virus. The viral determinants of Lv2 susceptibility have been mapped to the envelope and capsid proteins in both HIV-1 and HIV-2, and also viral protein R (Vpr) in HIV-1, and appears dependent on cellular entry mechanism. A genome-wide screen identified several likely contributing host factors including members of the polymerase-associated factor 1 (PAF1) and human silencing hub (HUSH) complexes, and the newly characterized regulation of nuclear pre-mRNA domain containing 2 (RPRD2). Subsequently, RPRD2 (or RNA-associated early-stage antiviral factor) has been shown to be upregulated upon T cell activation, is highly expressed in myeloid cells, binds viral reverse transcripts, and potently restricts HIV-1 infection. RPRD2 is also bound by HIV-1 Vpr and targeted for degradation by the proteasome upon reverse transcription, suggesting RPRD2 impedes reverse transcription and Vpr targeting overcomes this block. RPRD2 is mainly localized to the nucleus and binds RNA, DNA, and DNA:RNA hybrids. More recently, RPRD2 has been shown to negatively regulate genome-wide transcription and interact with the HUSH and PAF1 complexes which repress HIV transcription and are implicated in maintenance of HIV latency. In this review, we examine Lv2 restriction and the antiviral role of RPRD2 and consider potential mechanism(s) of action.

11.
Nat Commun ; 14(1): 6769, 2023 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-37880260

RESUMEN

Post-infectious conditions present major health burdens but remain poorly understood. In Chagas disease (CD), caused by Trypanosoma cruzi parasites, antiparasitic agents that successfully clear T. cruzi do not always improve clinical outcomes. In this study, we reveal differential small molecule trajectories between cardiac regions during chronic T. cruzi infection, matching with characteristic CD apical aneurysm sites. Incomplete, region-specific, cardiac small molecule restoration is observed in animals treated with the antiparasitic benznidazole. In contrast, superior restoration of the cardiac small molecule profile is observed for a combination treatment of reduced-dose benznidazole plus an immunotherapy, even with less parasite burden reduction. Overall, these results reveal molecular mechanisms of CD treatment based on simultaneous effects on the pathogen and on host small molecule responses, and expand our understanding of clinical treatment failure in CD. This link between infection and subsequent persistent small molecule perturbation broadens our understanding of infectious disease sequelae.


Asunto(s)
Enfermedad de Chagas , Nitroimidazoles , Tripanocidas , Trypanosoma cruzi , Animales , Tripanocidas/farmacología , Tripanocidas/uso terapéutico , Enfermedad de Chagas/tratamiento farmacológico , Enfermedad de Chagas/parasitología , Nitroimidazoles/farmacología , Nitroimidazoles/uso terapéutico , Corazón , Progresión de la Enfermedad
12.
Lancet Microbe ; 4(11): e923-e930, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37774729

RESUMEN

BACKGROUND: The polio eradication endgame required the withdrawal of Sabin type 2 from the oral poliovirus vaccine and introduction of one or more dose of inactivated poliovirus vaccine (IPV) into routine immunisation schedules. However, the duration of single-dose IPV immunity is unknown. We aimed to address this deficiency. METHODS: In this phase 4, open-label, non-randomised clinical trial, we assessed single-dose IPV immunity. Two groups of infants or children were screened: the first group had previously received IPV at 14 weeks of age or older (previous IPV group; age >2 years); the second had not previously received IPV (no previous IPV group; age 7-12 months). At enrolment, all participants received an IPV dose. Children in the no previous IPV group received a second IPV dose at day 30. Blood was collected three times in each group: on days 0, 7, and 30 in the previous IPV group and on days 0, 30, and 37 in the no previous IPV group. Poliovirus antibody was measured by microneutralisation assay. Immunity was defined as the presence of a detectable antibody or a rapid anamnestic response (ie, priming). We used the χ2 to compare proportions and the Mann-Whitney U test to assess continuous variables. To assess safety, vaccinees were observed for 30 min, caregivers for each participating child reported adverse events after each follow-up visit and were questioned during each follow-up visit regarding any adverse events during the intervening period. Adverse events were recorded and graded according to the severity of clinical symptoms. The study is registered with ClinicalTrials.gov, NCT03723837. FINDINGS: From Nov 18, 2018, to July 31, 2019, 502 participants enrolled in the study, 458 (255 [65%] boys and 203 [44%] girls) were included in the per protocol analysis: 234 (93%) in the previous IPV group and 224 (90%) in the no previous IPV group. In the previous IPV group, 28 months after one IPV dose 233 (>99%) of 234 children had persistence of poliovirus type 2 immunity (100 [43%] of 234 children were seropositive; 133 [99%] of 134 were seronegative and primed). In the no previous IPV group, 30 days after one IPV dose all 224 (100%) children who were type 2 poliovirus naive had seroconverted (223 [>99%] children) or were primed (one [<1%]). No adverse events were deemed attributable to study interventions. INTERPRETATION: A single IPV dose administered at 14 weeks of age or older is highly immunogenic and induces nearly universal type 2 immunity (seroconversion and priming), with immunity persisting for at least 28 months. The polio eradication initiative should prioritise first IPV dose administration to mitigate the paralytic burden caused by poliovirus type 2. FUNDING: WHO and Rotary International.


Asunto(s)
Poliomielitis , Vacuna Antipolio de Virus Inactivados , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Anticuerpos Antivirales , Poliomielitis/prevención & control , Poliomielitis/inducido químicamente , Poliovirus , Vacuna Antipolio de Virus Inactivados/efectos adversos
13.
PLoS One ; 18(9): e0291984, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37733669

RESUMEN

INTRODUCTION: People living with frailty risk adverse outcomes following even minor illnesses. Admission to hospital or the intensive care unit is associated with potentially burdensome interventions and poor outcomes. Decision-making during an emergency is fraught with complexity and potential for conflict between patients, carers and clinicians. Advance care planning is a process of shared decision-making which aims to ensure patients are treated in line with their wishes. However, planning for future care is challenging and those living with frailty are rarely given the opportunity to discuss their preferences. The aim of the ProsPECT (Prospective Planning for Escalation of Care and Treatment) study was to explore perspectives on planning for treatment escalation in the context of frailty. We spoke to people living with frailty, their carers and clinicians across primary and secondary care. METHODS: In-depth online or telephone interviews and online focus groups. The topic guide explored frailty, acute decision-making and planning for the future. Data were thematically analysed using the Framework Method. Preliminary findings were presented to a sample of study participants for feedback in two online workshops. RESULTS: We spoke to 44 participants (9 patients, 11 carers and 24 clinicians). Four main themes were identified: frailty is absent from treatment escalation discussions, planning for an uncertain future, escalation in an acute crisis is 'the path of least resistance', and approaches to facilitating treatment escalation planning in frailty. CONCLUSION: Barriers to treatment escalation planning include a lack of shared understanding of frailty and uncertainty about the future. Emergency decision-making is focussed on survival or risk aversion and patient preferences are rarely considered. To improve planning discussions, we recommend frailty training for non-specialist clinicians, multi-disciplinary support, collaborative working between patients, carers and clinicians as well as broader public engagement.


Asunto(s)
Planificación Anticipada de Atención , Fragilidad , Humanos , Estudios Prospectivos , Investigación Cualitativa , Grupos Focales
14.
Pediatr Rev ; 44(S1): S9-S13, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37777231
15.
Biol Reprod ; 109(6): 812-820, 2023 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-37688580

RESUMEN

Embryo morphokinetic analysis through time-lapse embryo imaging is envisioned as a method to improve selection of developmentally competent embryos. Morphokinetic analysis could be utilized to evaluate the effects of experimental manipulation on pre-implantation embryo development. The objectives of this study were to establish a normative morphokinetic database for in vitro fertilized rhesus macaque embryos and to assess the impact of atypical initial cleavage patterns on subsequent embryo development and formation of embryo outgrowths. The cleavage pattern and the timing of embryo developmental events were annotated retrospectively for unmanipulated in vitro fertilized rhesus macaque blastocysts produced over four breeding seasons. Approximately 50% of the blastocysts analyzed had an abnormal early cleavage event. The time to the initiation of embryo compaction and the time to completion of hatching was significantly delayed in blastocysts with an abnormal early cleavage event compared to blastocysts that had cleaved normally. Embryo hatching, attachment to an extracellular matrix, and growth during the implantation stage in vitro was not impacted by the initial cleavage pattern. These data establish normative morphokinetic parameters for in vitro fertilized rhesus macaque embryos and suggest that cleavage anomalies may not impact embryo implantation rates following embryo transfer.


Asunto(s)
Desarrollo Embrionario , Fertilización In Vitro , Animales , Macaca mulatta , Estudios Retrospectivos , Fertilización In Vitro/veterinaria , Fertilización In Vitro/métodos , Embrión de Mamíferos , Implantación del Embrión , Blastocisto , Imagen de Lapso de Tiempo/métodos , Técnicas de Cultivo de Embriones/veterinaria , Técnicas de Cultivo de Embriones/métodos
16.
Curr Res Immunol ; 4: 100066, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37534309

RESUMEN

Tc24 is a Trypanosoma cruzi-derived flagellar protein that, when formulated with a TLR-4 agonist adjuvant, induces a balanced immune response in mice, elevating IgG2a antibody titers and IFN-γ levels. Furthermore, vaccination with the recombinant Tc24 protein can reduce parasite levels and improve survival during acute infection. Although some mRNA vaccines have been proven to elicit a stronger immune response than some protein vaccines, they have not been used against T. cruzi. This work evaluates the immunogenicity of a heterologous prime/boost vaccination regimen using protein and mRNA-based Tc24 vaccines. Mice (C57BL/6) were vaccinated twice subcutaneously, three weeks apart, with either the Tc24-C4 protein + glucopyranosyl A (GLA)-squalene emulsion, Tc24 mRNA Lipid Nanoparticles, or with heterologous protein/mRNA or mRNA/protein combinations, respectively. Two weeks after the last vaccination, mice were euthanized, spleens were collected to measure antigen-specific T-cell responses, and sera were collected to evaluate IgG titers and isotypes. Heterologous presentation of the Tc24 antigen generated antigen-specific polyfunctional CD8+ T cells, a balanced Th1/Th2/Th17 cytokine profile, and a balanced humoral response with increased serum IgG, IgG1 and IgG2c antibody responses. We conclude that heterologous vaccination using Tc24 mRNA to prime and Tc24-C4 protein to boost induces a broad and robust antigen-specific immune response that was equivalent or superior to two doses of a homologous protein vaccine, the homologous mRNA vaccine and the heterologous Tc24-C4 Protein/mRNA vaccine.

17.
Vaccine ; 41(41): 6083-6092, 2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37652822

RESUMEN

BACKGROUND: To inform response strategies, we examined type 1 humoral and intestinal immunity induced by 1) one fractional inactivated poliovirus vaccine (fIPV) dose given with monovalent oral poliovirus vaccine (mOPV1), and 2) mOPV1 versus bivalent OPV (bOPV). METHODS: We conducted a randomized, controlled, open-label trial in Dhaka, Bangladesh. Healthy infants aged 5 weeks were block randomized to one of four arms: mOPV1 at age 6-10-14 weeks/fIPV at 6 weeks (A); mOPV1 at 6-10-14 weeks/fIPV at 10 weeks (B); mOPV1 at 6-10-14 weeks (C); and bOPV at 6-10-14 weeks (D). Immune response at 10 weeks and cumulative response at 14 weeks was assessed among the modified intention-to-treat population, defined as seroconversion from seronegative (<1:8 titers) to seropositive (≥1:8) or a four-fold titer rise among seropositive participants sustained to age 18 weeks. We examined virus shedding after two doses of mOPV1 with and without fIPV, and after the first mOPV1 or bOPV dose. The trial is registered at ClinicalTrials.gov (NCT03722004). FINDINGS: During 18 December 2018 - 23 November 2019, 1,192 infants were enrolled (arms A:301; B:295; C:298; D:298). Immune responses at 14 weeks did not differ after two mOPV1 doses alone (94% [95% CI: 91-97%]) versus two mOPV1 doses with fIPV at 6 weeks (96% [93-98%]) or 10 weeks (96% [93-98%]). Participants who received mOPV1 and fIPV at 10 weeks had significantly lower shedding (p < 0·001) one- and two-weeks later compared with mOPV1 alone. Response to one mOPV1 dose was significantly higher than one bOPV dose (79% versus 67%; p < 0·001) and shedding two-weeks later was significantly higher after mOPV1 (76% versus 56%; p < 0·001) indicating improved vaccine replication. Ninety-nine adverse events were reported, 29 serious including two deaths; none were attributed to study vaccines. INTERPRETATION: Given with the second mOPV1 dose, fIPV improved intestinal immunity but not humoral immunity. One mOPV1 dose induced higher humoral and intestinal immunity than bOPV. FUNDING: U.S. Centers for Disease Control and Prevention.


Asunto(s)
Inmunidad Mucosa , Poliomielitis , Vacuna Antipolio de Virus Inactivados , Vacuna Antipolio Oral , Humanos , Lactante , Bangladesh , Poliovirus , Vacuna Antipolio de Virus Inactivados/efectos adversos , Estados Unidos , Poliomielitis/prevención & control
18.
Vaccine ; 41(37): 5400-5411, 2023 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-37479612

RESUMEN

Leishmania spp. and Trypanosoma cruzi are parasitic kinetoplastids of great medical and epidemiological importance since they are responsible for thousands of deaths and disability-adjusted life-years annually, especially in low- and middle-income countries. Despite efforts to minimize their impact, current prevention measures have failed to fully control their spread. There are still no vaccines available. Taking into account the genetic similarity within the Class Kinetoplastida, we selected CD8+ T cell epitopes preserved among Leishmania spp. and T. cruzi to construct a multivalent and broad-spectrum chimeric polyprotein vaccine. In addition to inducing specific IgG production, immunization with the vaccine was able to significantly reduce parasite burden in the colon, liver and skin lesions from T. cruzi, L. infantum and L. mexicana challenged mice, respectively. These findings were supported by histopathological analysis, which revealed decreased inflammation in the colon, a reduced number of degenerated hepatocytes and an increased proliferation of connective tissue in the skin lesions of the corresponding T. cruzi, L. infantum and L. mexicana vaccinated and challenged mice. Collectively, our results support the protective effect of a polyprotein vaccine approach and further studies will elucidate the immune profile associated with this protection. Noteworthy, our results act as conceptual proof that a single multi-kinetoplastida vaccine can be used effectively to control different infectious etiologies, which in turn can have a profound impact on the development of a new generation of vaccines.


Asunto(s)
Enfermedad de Chagas , Leishmania , Leishmaniasis , Parásitos , Trypanosoma cruzi , Humanos , Animales , Ratones , Vacunas Combinadas , Leishmaniasis/prevención & control , Enfermedad de Chagas/prevención & control , Proteínas Recombinantes de Fusión
19.
bioRxiv ; 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37503013

RESUMEN

Background: Chagas disease, chronic infection with Trypanosoma cruzi, mainly manifests as cardiac disease. However, the liver is important for both controlling parasite burdens and metabolizing drugs. Notably, high doses of anti-parasitic drug benznidazole (BNZ) causes liver damage. We previously showed that combining low dose BNZ with a prototype therapeutic vaccine is a dose sparing strategy that effectively reduced T. cruzi induced cardiac damage. However, the impact of this treatment on liver health is unknown. Therefore, we evaluated several markers of liver health after treatment with low dose BNZ plus the vaccine therapy in comparison to a curative dose of BNZ. Methodology: Female BALB/c mice were infected with a bioluminescent T. cruzi H1 clone for approximately 70 days, then randomly divided into groups of 15 mice each. Mice were treated with a 25mg/kg BNZ, 25µg Tc24-C4 protein/5µg E6020-SE (Vaccine), 25mg/kg BNZ followed by vaccine, or 100mg/kg BNZ (curative dose). At study endpoints we evaluated hepatomegaly, parasite burden by quantitative PCR, cellular infiltration by histology, and expression of B-cell translocation gene 2(BTG2) and Peroxisome proliferator-activated receptor alpha (PPARα) by RT-PCR. Levels of alanine transaminase (ALT), aspartate transaminase (AST), alkaline phosphatase (ALP) and lactate dehydrogenase (LDH) were quantified from serum. Results: Curative BNZ treatment significantly reduced hepatomegaly, liver parasite burdens, and the quantity of cellular infiltrate, but significantly elevated serum levels of ALT, AST, and LDH. Low BNZ plus vaccine did not significantly affect hepatomegaly, parasite burdens or the quantity of cellular infiltrate, but only elevated ALT and AST. Low dose BNZ significantly decreased expression of both BTG2 and PPARα, and curative BNZ reduced expression of BTG2 while low BNZ plus vaccine had no impact. Conclusions: These data confirm toxicity associated with curative doses of BNZ and suggest that the dose sparing low BNZ plus vaccine treatment better preserves liver health.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA