Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 186
Filtrar
1.
Nat Med ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961225

RESUMEN

APOE4 is the strongest genetic risk factor for Alzheimer's disease (AD), with increased odds ratios in female carriers. Targeting amyloid plaques shows modest improvement in male non-APOE4 carriers. Leveraging single-cell transcriptomics across APOE variants in both sexes, multiplex flow cytometry and validation in two independent cohorts of APOE4 female carriers with AD, we identify a new subset of neutrophils interacting with microglia associated with cognitive impairment. This phenotype is defined by increased interleukin (IL)-17 and IL-1 coexpressed gene modules in blood neutrophils and in microglia of cognitively impaired female APOE ε4 carriers, showing increased infiltration to the AD brain. APOE4 female IL-17+ neutrophils upregulated the immunosuppressive cytokines IL-10 and TGFß and immune checkpoints, including LAG3 and PD-1, associated with accelerated immune aging. Deletion of APOE4 in neutrophils reduced this immunosuppressive phenotype and restored the microglial response to neurodegeneration, limiting plaque pathology in AD mice. Mechanistically, IL-17F upregulated in APOE4 neutrophils interacts with microglial IL-17RA to suppress the induction of the neurodegenerative phenotype, and blocking this axis supported cognitive improvement in AD mice. These findings provide a translational basis to target IL-17F in APOE ε4 female carriers with cognitive impairment.

2.
EMBO Rep ; 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38992176

RESUMEN

Mitophagy must be carefully regulated to ensure that cells maintain appropriate numbers of functional mitochondria. The SCFFBXL4 ubiquitin ligase complex suppresses mitophagy by controlling the degradation of BNIP3 and NIX mitophagy receptors, and FBXL4 mutations result in mitochondrial disease as a consequence of elevated mitophagy. Here, we reveal that the mitochondrial phosphatase PPTC7 is an essential cofactor for SCFFBXL4-mediated destruction of BNIP3 and NIX, suppressing both steady-state and induced mitophagy. Disruption of the phosphatase activity of PPTC7 does not influence BNIP3 and NIX turnover. Rather, a pool of PPTC7 on the mitochondrial outer membrane acts as an adaptor linking BNIP3 and NIX to FBXL4, facilitating the turnover of these mitophagy receptors. PPTC7 accumulates on the outer mitochondrial membrane in response to mitophagy induction or the absence of FBXL4, suggesting a homoeostatic feedback mechanism that attenuates high levels of mitophagy. We mapped critical residues required for PPTC7-BNIP3/NIX and PPTC7-FBXL4 interactions and their disruption interferes with both BNIP3/NIX degradation and mitophagy suppression. Collectively, these findings delineate a complex regulatory mechanism that restricts BNIP3/NIX-induced mitophagy.

3.
Cell Calcium ; 123: 102923, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38970922

RESUMEN

The central nervous system (CNS) is constantly surveilled by microglia, highly motile and dynamic cells deputed to act as the first line of immune defense in the brain and spinal cord. Alterations in the homeostasis of the CNS are detected by microglia that respond by extending their processes or - following major injuries - by migrating toward the affected area. Understanding the mechanisms controlling directed cell migration of microglia is crucial to dissect their responses to neuroinflammation and injury. We used a combination of pharmacological and genetic approaches to explore the involvement of calcium (Ca2+) signaling in the directed migration of human induced pluripotent stem cell (iPSC)-derived microglia challenged with a purinergic stimulus. This approach mimics cues originating from injury of the CNS. Unexpectedly, simultaneous imaging of microglia migration and intracellular Ca2+ changes revealed that this phenomenon does not require Ca2+ signals generated from the endoplasmic reticulum (ER) and store-operated Ca2+ entry (SOCE) pathways. Instead, we find evidence that human microglial chemotaxis to purinergic signals is mediated by cyclic AMP in a Ca2+-independent manner. These results challenge prevailing notions, with important implications in neurological conditions characterized by perturbation in Ca2+ homeostasis.

4.
Neuron ; 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38897208

RESUMEN

Microglia are brain-resident macrophages that contribute to central nervous system (CNS) development, maturation, and preservation. Here, we examine the consequences of permanent microglial deficiencies on brain aging using the Csf1rΔFIRE/ΔFIRE mouse model. In juvenile Csf1rΔFIRE/ΔFIRE mice, we show that microglia are dispensable for the transcriptomic maturation of other brain cell types. By contrast, with advancing age, pathologies accumulate in Csf1rΔFIRE/ΔFIRE brains, macroglia become increasingly dysregulated, and white matter integrity declines, mimicking many pathological features of human CSF1R-related leukoencephalopathy. The thalamus is particularly vulnerable to neuropathological changes in the absence of microglia, with atrophy, neuron loss, vascular alterations, macroglial dysregulation, and severe tissue calcification. We show that populating Csf1rΔFIRE/ΔFIRE brains with wild-type microglia protects against many of these pathological changes. Together with the accompanying study by Chadarevian and colleagues1, our results indicate that the lifelong absence of microglia results in an age-related neurodegenerative condition that can be counteracted via transplantation of healthy microglia.

5.
Neuron ; 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38897209

RESUMEN

Microglia replacement strategies are increasingly being considered for the treatment of primary microgliopathies like adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP). However, available mouse models fail to recapitulate the diverse neuropathologies and reduced microglia numbers observed in patients. In this study, we generated a xenotolerant mouse model lacking the fms-intronic regulatory element (FIRE) enhancer within Csf1r, which develops nearly all the hallmark pathologies associated with ALSP. Remarkably, transplantation of human induced pluripotent stem cell (iPSC)-derived microglial (iMG) progenitors restores a homeostatic microglial signature and prevents the development of axonal spheroids, white matter abnormalities, reactive astrocytosis, and brain calcifications. Furthermore, transplantation of CRISPR-corrected ALSP-patient-derived iMG reverses pre-existing spheroids, astrogliosis, and calcification pathologies. Together with the accompanying study by Munro and colleagues, our results demonstrate the utility of FIRE mice to model ALSP and provide compelling evidence that iMG transplantation could offer a promising new therapeutic strategy for ALSP and perhaps other microglia-associated neurological disorders.

6.
Mol Psychiatry ; 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38519640

RESUMEN

Several lines of evidence indicate the involvement of neuroinflammatory processes in the pathophysiology of schizophrenia (SCZ). Microglia are brain resident immune cells responding toward invading pathogens and injury-related products, and additionally, have a critical role in improving neurogenesis and synaptic functions. Aberrant activation of microglia in SCZ is one of the leading hypotheses for disease pathogenesis, but due to the lack of proper human cell models, the role of microglia in SCZ is not well studied. We used monozygotic twins discordant for SCZ and healthy individuals to generate human induced pluripotent stem cell-derived microglia to assess the transcriptional and functional differences in microglia between healthy controls, affected twins and unaffected twins. The microglia from affected twins had increased expression of several common inflammation-related genes compared to healthy individuals. Microglia from affected twins had also reduced response to interleukin 1 beta (IL1ß) treatment, but no significant differences in migration or phagocytotic activity. Ingenuity Pathway Analysis (IPA) showed abnormalities related to extracellular matrix signaling. RNA sequencing predicted downregulation of extracellular matrix structure constituent Gene Ontology (GO) terms and hepatic fibrosis pathway activation that were shared by microglia of both affected and unaffected twins, but the upregulation of major histocompatibility complex (MHC) class II receptors was observed only in affected twin microglia. Also, the microglia of affected twins had heterogeneous response to clozapine, minocycline, and sulforaphane treatments. Overall, despite the increased expression of inflammatory genes, we observed no clear functional signs of hyperactivation in microglia from patients with SCZ. We conclude that microglia of the patients with SCZ have gene expression aberrations related to inflammation response and extracellular matrix without contributing to increased microglial activation.

8.
Adv Sci (Weinh) ; 11(20): e2304357, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38482922

RESUMEN

Microglial neuroinflammation appears to be neuroprotective in the early pathological stage, yet neurotoxic, which often precedes neurodegeneration in Alzheimer's disease (AD). However, it remains unclear how the microglial activities transit to the neurotoxic state during AD progression, due to complex neuron-glia interactions. Here, the mechanism of detrimental microgliosis in AD by employing 3D human AD mini-brains, brain tissues of AD patients, and 5XFAD mice is explored. In the human and animal AD models, amyloid-beta (Aß)-overexpressing neurons and reactive astrocytes produce interferon-gamma (IFNγ) and excessive oxidative stress. IFNγ results in the downregulation of mitogen-activated protein kinase (MAPK) and the upregulation of Kelch-like ECH-associated Protein 1 (Keap1) in microglia, which inactivate nuclear factor erythroid-2-related factor 2 (Nrf2) and sensitize microglia to the oxidative stress and induces a proinflammatory microglia via nuclear factor kappa B (NFκB)-axis. The proinflammatory microglia in turn produce neurotoxic nitric oxide and proinflammatory mediators exacerbating synaptic impairment, phosphorylated-tau accumulation, and discernable neuronal loss. Interestingly, recovering Nrf2 in the microglia prevents the activation of proinflammatory microglia and significantly blocks the tauopathy in AD minibrains. Taken together, it is envisioned that IFNγ-driven Nrf2 downregulation in microglia as a key target to ameliorate AD pathology.


Asunto(s)
Enfermedad de Alzheimer , Modelos Animales de Enfermedad , Interferón gamma , Microglía , Factor 2 Relacionado con NF-E2 , Estrés Oxidativo , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Animales , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/genética , Microglía/metabolismo , Humanos , Ratones , Interferón gamma/metabolismo , Ratones Transgénicos
9.
bioRxiv ; 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38370802

RESUMEN

Changes in brain mitochondrial metabolism are coincident with functional decline; however, direct links between the two have not been established. Here, we show that mitochondrial targeting via the adiponectin receptor activator AdipoRon (AR) clears neurofibrillary tangles (NFTs) and rescues neuronal tauopathy-associated defects. AR reduced levels of phospho-tau and lowered NFT burden by a mechanism involving the energy-sensing kinase AMPK and the growth-sensing kinase GSK3b. The transcriptional response to AR included broad metabolic and functional pathways. Induction of lysosomal pathways involved activation of LC3 and p62, and restoration of neuronal outgrowth required the stress-responsive kinase JNK. Negative consequences of NFTs on mitochondrial activity, ATP production, and lipid stores were corrected. Defects in electrophysiological measures (e.g., resting potential, resistance, spiking profiles) were also corrected. These findings reveal a network linking mitochondrial function, cellular maintenance processes, and electrical aspects of neuronal function that can be targeted via adiponectin receptor activation.

10.
bioRxiv ; 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38293075

RESUMEN

The central nervous system (CNS) is constantly surveilled by microglia, highly motile and dynamic cells deputed to act as the first line of immune defense in the brain and spinal cord. Alterations in the homeostasis of the CNS are detected by microglia that respond by migrating toward the affected area. Understanding the mechanisms controlling directed cell migration of microglia is crucial to dissect their responses to neuroinflammation and injury. We used a combination of pharmacological and genetic approaches to explore the involvement of calcium (Ca2+) signaling in the directed migration of induced pluripotent stem cell (iPSC)-derived microglia challenged with a purinergic stimulus. This approach mimics cues originating from injury of the CNS. Unexpectedly, simultaneous imaging of microglia migration and intracellular Ca2+ changes revealed that this phenomenon does not require Ca2+ signals generated from the endoplasmic reticulum (ER) and store-operated Ca2+ entry (SOCE) pathways. Instead, we find evidence that human microglial chemotaxis to purinergic signals is mediated by cyclic AMP in a Ca2+-independent manner. These results challenge prevailing notions, with important implications in neurological conditions characterized by perturbation in Ca2+ homeostasis.

11.
J Integr Neurosci ; 23(1): 24, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38287860

RESUMEN

OBJECTIVE: Absence seizures result from aberrant thalamocortical processing that confers synchronous, bilateral spike-and-wave discharges (SWDs) and behavioral arrest. Previous work has demonstrated that SWDs can result from enhanced thalamic tonic inhibition, consistent with the mechanism of first-line antiabsence drugs that target thalamic low-voltage-activated calcium channels. However, nearly half of patients with absence epilepsy are unresponsive to first-line medications. In this study we evaluated the role of cortical tonic inhibition and its manipulation on absence seizure expression. METHODS: We used video-electroencephalogram (EEG) monitoring to show that mice with a γ-aminobutyric acid type A (GABAA) receptor mutation (γ2R43Q) display absence seizures. Voltage-clamp recordings in brain slices from wild type and γ2R43Q mice were used to evaluate the amount of tonic inhibition and its selective pharmacological modulation. Finally, we determined whether modulating tonic inhibition controls seizure expression. RESULTS: γ2R43Q mice completely lack tonic inhibition in principal neurons of both layer 2/3 cortex and ventrobasal thalamus. Blocking cortical tonic inhibition in wild type mice is sufficient to elicit SWDs. Tonic inhibition in slices from γ2R43Q mice could be rescued in a dose-dependent fashion by the synthetic neurosteroid ganaxolone. Low-dose ganaxolone suppressed seizures in γ2R43Q mice. CONCLUSIONS: Our data suggest that reduced cortical tonic inhibition promotes absence seizures and that normal function can be restored via selective pharmacological rescue. These results, together with previous findings, suggest that deviations of tonic inhibition either above or below an optimal set point can contribute to absence epilepsy. Returning the thalamocortical system to this set point may provide a novel treatment for refractory absence epilepsy.


Asunto(s)
Epilepsia Tipo Ausencia , Humanos , Ratones , Animales , Epilepsia Tipo Ausencia/tratamiento farmacológico , Epilepsia Tipo Ausencia/genética , Convulsiones , Encéfalo , Tálamo , Electroencefalografía
12.
Mol Neurodegener ; 18(1): 99, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38115077

RESUMEN

Apolipoprotein E (APOE) is the single greatest genetic risk factor for late onset Alzheimer's disease (AD). Yet, the cell-specific effects of APOE on microglia function have remained unclear. Fortunately, two comprehensive new studies published in the latest issue of Nature Immunology have employed complementary gain-of-function and loss-of-function approaches to provide critical new insight into the impact of microglial APOE on AD pathogenesis.


Asunto(s)
Enfermedad de Alzheimer , Apolipoproteína E4 , Humanos , Animales , Ratones , Apolipoproteína E4/genética , Microglía , Apolipoproteína E3/genética , Enfermedad de Alzheimer/genética , Apolipoproteínas E/genética , Ratones Transgénicos
13.
Nat Cell Biol ; 25(12): 1848-1859, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37957324

RESUMEN

Breast cancer brain metastasis (BCBM) is a lethal disease with no effective treatments. Prior work has shown that brain cancers and metastases are densely infiltrated with anti-inflammatory, protumourigenic tumour-associated macrophages, but the role of brain-resident microglia remains controversial because they are challenging to discriminate from other tumour-associated macrophages. Using single-cell RNA sequencing, genetic and humanized mouse models, we specifically identify microglia and find that they play a distinct pro-inflammatory and tumour-suppressive role in BCBM. Animals lacking microglia show increased metastasis, decreased survival and reduced natural killer and T cell responses, showing that microglia are critical to promote anti-tumour immunity to suppress BCBM. We find that the pro-inflammatory response is conserved in human microglia, and markers of their response are associated with better prognosis in patients with BCBM. These findings establish an important role for microglia in anti-tumour immunity and highlight them as a potential immunotherapy target for brain metastasis.


Asunto(s)
Neoplasias Encefálicas , Neoplasias de la Mama , Ratones , Animales , Humanos , Femenino , Microglía , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Neoplasias Encefálicas/patología , Encéfalo/patología , Resultado del Tratamiento
14.
Exp Neurol ; 370: 114578, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37858696

RESUMEN

Traumatic brain injury leads to cellular and circuit changes in the dentate gyrus, a gateway to hippocampal information processing. Intrinsic granule cell firing properties and strong feedback inhibition in the dentate are proposed as critical to its ability to generate unique representation of similar inputs by a process known as pattern separation. Here we evaluate the impact of brain injury on cellular decorrelation of temporally patterned inputs in slices and behavioral discrimination of spatial locations in vivo one week after concussive lateral fluid percussion injury (FPI) in mice. Despite posttraumatic increases in perforant path evoked excitatory drive to granule cells and enhanced ΔFosB labeling, indicating sustained increase in excitability, the reliability of granule cell spiking was not compromised after FPI. Although granule cells continued to effectively decorrelate output spike trains recorded in response to similar temporally patterned input sets after FPI, their ability to decorrelate highly similar input patterns was reduced. In parallel, encoding of similar spatial locations in a novel object location task that involves the dentate inhibitory circuits was impaired one week after FPI. Injury induced changes in pattern separation were accompanied by loss of somatostatin expressing inhibitory neurons in the hilus. Together, these data suggest that the early posttraumatic changes in the dentate circuit undermine dentate circuit decorrelation of temporal input patterns as well as behavioral discrimination of similar spatial locations, both of which could contribute to deficits in episodic memory.


Asunto(s)
Lesiones Encefálicas , Giro Dentado , Ratones , Animales , Reproducibilidad de los Resultados , Hipocampo , Neuronas
15.
bioRxiv ; 2023 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-37745454

RESUMEN

Traumatic brain injury leads to cellular and circuit changes in the dentate gyrus, a gateway to hippocampal information processing. Intrinsic granule cell firing properties and strong feedback inhibition in the dentate are proposed as critical to its ability to generate unique representation of similar inputs by a process known as pattern separation. Here we evaluate the impact of brain injury on cellular decorrelation of temporally patterned inputs in slices and behavioral discrimination of spatial locations in vivo one week after concussive lateral fluid percussion injury (FPI) in mice. Despite posttraumatic increases in perforant path evoked excitatory drive to granule cells and enhanced ΔFosB labeling, indicating sustained increase in excitability, the reliability of granule cell spiking was not compromised after FPI. Although granule cells continued to effectively decorrelate output spike trains recorded in response to similar temporally patterned input sets after FPI, their ability to decorrelate highly similar input patterns was reduced. In parallel, encoding of similar spatial locations in a novel object location task that involves the dentate inhibitory circuits was impaired one week after FPI. Injury induced changes in pattern separation were accompanied by loss of somatostatin expressing inhibitory neurons in the hilus. Together, these data suggest that the early posttraumatic changes in the dentate circuit undermine dentate circuit decorrelation of temporal input patterns as well as behavioral discrimination of similar spatial locations, both of which could contribute to deficits in episodic memory.

16.
Cell Death Dis ; 14(8): 496, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37537168

RESUMEN

Traumatic Brain injury-induced disturbances in mitochondrial fission-and-fusion dynamics have been linked to the onset and propagation of neuroinflammation and neurodegeneration. However, cell-type-specific contributions and crosstalk between neurons, microglia, and astrocytes in mitochondria-driven neurodegeneration after brain injury remain undefined. We developed a human three-dimensional in vitro triculture tissue model of a contusion injury composed of neurons, microglia, and astrocytes and examined the contributions of mitochondrial dysregulation to neuroinflammation and progression of injury-induced neurodegeneration. Pharmacological studies presented here suggest that fragmented mitochondria released by microglia are a key contributor to secondary neuronal damage progression after contusion injury, a pathway that requires astrocyte-microglia crosstalk. Controlling mitochondrial dysfunction thus offers an exciting option for developing therapies for TBI patients.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Contusiones , Humanos , Enfermedades Neuroinflamatorias , Inflamación/metabolismo , Encéfalo/metabolismo , Lesiones Traumáticas del Encéfalo/metabolismo , Contusiones/metabolismo , Mitocondrias/metabolismo , Microglía/metabolismo , Astrocitos/metabolismo
17.
Brain Behav Immun ; 113: 353-373, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37543250

RESUMEN

Frontotemporal dementia (FTD) is a common cause of early-onset dementia, with no current treatment options. FTD linked to chromosome 3 (FTD3) is a rare sub-form of the disease, caused by a point mutation in the Charged Multivesicular Body Protein 2B (CHMP2B). This mutation causes neuronal phenotypes, such as mitochondrial deficiencies, accompanied by metabolic changes and interrupted endosomal-lysosomal fusion. However, the contribution of glial cells to FTD3 pathogenesis has, until recently, been largely unexplored. Glial cells play an important role in most neurodegenerative disorders as drivers and facilitators of neuroinflammation. Microglia are at the center of current investigations as potential pro-inflammatory drivers. While gliosis has been observed in FTD3 patient brains, it has not yet been systematically analyzed. In the light of this, we investigated the role of microglia in FTD3 by implementing human induced pluripotent stem cells (hiPSC) with either a heterozygous or homozygous CHMP2B mutation, introduced into a healthy control hiPSC line via CRISPR-Cas9 precision gene editing. These hiPSC were differentiated into microglia to evaluate the pro-inflammatory profile and metabolic state. Moreover, hiPSC-derived neurons were cultured with conditioned microglia media to investigate disease specific interactions between the two cell populations. Interestingly, we identified two divergent inflammatory microglial phenotypes resulting from the underlying mutations: a severe pro-inflammatory profile in CHMP2B homozygous FTD3 microglia, and an "unresponsive" CHMP2B heterozygous FTD3 microglial state. These findings correlate with our observations of increased phagocytic activity in CHMP2B homozygous, and impaired protein degradation in CHMP2B heterozygous FTD3 microglia. Metabolic mapping confirmed these differences, revealing a metabolic reprogramming of the CHMP2B FTD3 microglia, displayed as a compensatory up-regulation of glutamine metabolism in the CHMP2B homozygous FTD3 microglia. Intriguingly, conditioned CHMP2B homozygous FTD3 microglia media caused neurotoxic effects, which was not evident for the heterozygous microglia. Strikingly, IFN-γ treatment initiated an immune boost of the CHMP2B heterozygous FTD3 microglia, and conditioned microglia media exposure promoted neural outgrowth. Our findings indicate that the microglial profile, activity, and behavior is highly dependent on the status of the CHMP2B mutation. Our results suggest that the heterozygous state of the mutation in FTD3 patients could potentially be exploited in form of immune-boosting intervention strategies to counteract neurodegeneration.


Asunto(s)
Demencia Frontotemporal , Células Madre Pluripotentes Inducidas , Humanos , Demencia Frontotemporal/genética , Demencia Frontotemporal/metabolismo , Demencia Frontotemporal/patología , Células Madre Pluripotentes Inducidas/metabolismo , Microglía/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo
18.
Immunity ; 56(9): 2152-2171.e13, 2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37582369

RESUMEN

Microglia phenotypes are highly regulated by the brain environment, but the transcriptional networks that specify the maturation of human microglia are poorly understood. Here, we characterized stage-specific transcriptomes and epigenetic landscapes of fetal and postnatal human microglia and acquired corresponding data in induced pluripotent stem cell (iPSC)-derived microglia, in cerebral organoids, and following engraftment into humanized mice. Parallel development of computational approaches that considered transcription factor (TF) co-occurrence and enhancer activity allowed prediction of shared and state-specific gene regulatory networks associated with fetal and postnatal microglia. Additionally, many features of the human fetal-to-postnatal transition were recapitulated in a time-dependent manner following the engraftment of iPSC cells into humanized mice. These data and accompanying computational approaches will facilitate further efforts to elucidate mechanisms by which human microglia acquire stage- and disease-specific phenotypes.


Asunto(s)
Células Madre Pluripotentes Inducidas , Microglía , Humanos , Ratones , Animales , Redes Reguladoras de Genes , Encéfalo , Regulación de la Expresión Génica
20.
STAR Protoc ; 4(3): 102490, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37516973

RESUMEN

Chimeric mouse models have recently been developed to study human microglia in vivo. However, widespread engraftment of donor microglia within the adult brain has been challenging. Here, we present a protocol to introduce the G795A point mutation using CRISPR-Cas9 into the CSF1R locus of human pluripotent stem cells. We also describe an optimized microglial differentiation technique for transplantation into newborn or adult recipients. We then detail pharmacological paradigms to achieve widespread and near-complete engraftment of human microglia. For complete details on the use and execution of this protocol, please refer to Chadarevian et al. (2023).1.


Asunto(s)
Microglía , Células Madre Pluripotentes , Adulto , Animales , Ratones , Recién Nacido , Humanos , Encéfalo , Modelos Animales de Enfermedad , Mutación Puntual
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...