Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cell Mol Gastroenterol Hepatol ; 10(1): 23-42, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31958521

RESUMEN

BACKGROUND & AIMS: Activation factor-1 transcription factor family members activating transcription factors 2 and 7 (ATF2 and ATF7) have highly redundant functions owing to highly homologous DNA binding sites. Their role in intestinal epithelial homeostasis and repair is unknown. Here, we assessed the role of these proteins in these conditions in an intestine-specific mouse model. METHODS: We performed in vivo and ex vivo experiments using Villin-CreERT2Atf2fl/flAtf7ko/ko mice. We investigated the effects of intestinal epithelium-specific deletion of the Atf2 DNA binding region in Atf7-/- mice on cellular proliferation, differentiation, apoptosis, and epithelial barrier function under homeostatic conditions. Subsequently, we exposed mice to 2% dextran sulfate sodium (DSS) for 7 days and 12 Gy whole-body irradiation and assessed the response to epithelial damage. RESULTS: Activating phosphorylation of ATF2 and ATF7 was detected mainly in the crypts of the small intestine and the lower crypt region of the colonic epithelium. Under homeostatic conditions, no major phenotypic changes were detectable in the intestine of ATF mutant mice. However, on DSS exposure or whole-body irradiation, the intestinal epithelium showed a clearly impaired regenerative response. Mutant mice developed severe ulceration and inflammation associated with increased epithelial apoptosis on DSS exposure and were less able to regenerate colonic crypts on irradiation. In vitro, organoids derived from double-mutant epithelium had a growth disadvantage compared with wild-type organoids, impaired wound healing capacity in scratch assay, and increased sensitivity to tumor necrosis factor-α-induced damage. CONCLUSIONS: ATF2 and ATF7 are dispensable for epithelial homeostasis, but are required to maintain epithelial regenerative capacity and protect against cell death during intestinal epithelial damage and repair.


Asunto(s)
Factor de Transcripción Activador 2/metabolismo , Factores de Transcripción Activadores/metabolismo , Colitis Ulcerosa/patología , Mucosa Intestinal/patología , Regeneración , Factor de Transcripción Activador 2/genética , Factores de Transcripción Activadores/genética , Animales , Apoptosis , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Colitis Ulcerosa/inducido químicamente , Colon/efectos de los fármacos , Colon/patología , Colon/efectos de la radiación , Sulfato de Dextran/administración & dosificación , Sulfato de Dextran/toxicidad , Modelos Animales de Enfermedad , Células Epiteliales , Humanos , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/efectos de la radiación , Ratones , Ratones Transgénicos , Organoides , Cultivo Primario de Células , Irradiación Corporal Total
2.
Cell Rep ; 9(4): 1361-74, 2014 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-25456131

RESUMEN

JNK and p38 phosphorylate a diverse set of substrates and, consequently, can act in a context-dependent manner to either promote or inhibit tumor growth. Elucidating the functions of specific substrates of JNK and p38 is therefore critical for our understanding of these kinases in cancer. ATF2 is a phosphorylation-dependent transcription factor and substrate of both JNK and p38. Here, we show ATF2 suppresses tumor formation in an orthotopic model of liver cancer and cellular transformation in vitro. Furthermore, we find that suppression of tumorigenesis by JNK requires ATF2. We identify a transcriptional program activated by JNK via ATF2 and provide examples of JNK- and ATF2-dependent genes that block cellular transformation. Significantly, we also show that ATF2-dependent gene expression is frequently downregulated in human cancers, indicating that amelioration of JNK-ATF2-mediated suppression may be a common event during tumor development.


Asunto(s)
Factor de Transcripción Activador 2/metabolismo , Carcinogénesis/genética , Carcinogénesis/patología , Regulación Neoplásica de la Expresión Génica , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Factor de Transcripción Activador 2/química , Factor de Transcripción Activador 2/genética , Animales , Apoptosis/genética , Línea Celular Tumoral , Proliferación Celular , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/patología , Humanos , Neoplasias Hepáticas/enzimología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Ratones , Fosforilación , Estructura Terciaria de Proteína , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transcripción Genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Proteínas ras/metabolismo
3.
EMBO J ; 31(3): 563-75, 2012 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-22139357

RESUMEN

In fission yeast, the stress-activated MAP kinase, Sty1, is activated via phosphorylation upon exposure to stress and orchestrates an appropriate response. Its activity is attenuated by either serine/threonine PP2C or tyrosine phosphatases. Here, we found that the PP2C phosphatase, Ptc4, plays an important role in inactivating Sty1 specifically upon oxidative stress. Sty1 activity remains high in a ptc4 deletion mutant upon H(2)O(2) but not under other types of stress. Surprisingly, Ptc4 localizes to the mitochondria and is targeted there by an N-terminal mitochondrial targeting sequence (MTS), which is cleaved upon import. A fraction of Sty1 also localizes to the mitochondria suggesting that Ptc4 attenuates the activity of a mitochondrial pool of this MAPK. Cleavage of the Ptc4 MTS is greatly reduced specifically upon H(2)O(2), resulting in the full-length form of the phosphatase; this displays a stronger interaction with Sty1, thus suggesting a novel mechanism by which the negative regulation of MAPK signalling is controlled and providing an explanation for the oxidative stress-specific nature of the regulation of Sty1 by Ptc4.


Asunto(s)
Peróxido de Hidrógeno/metabolismo , Mitocondrias/enzimología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/enzimología , Activación Enzimática , Estrés Oxidativo , Fosforilación , Proteolisis
4.
PLoS One ; 6(4): e19090, 2011 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-21533046

RESUMEN

The AP-1 family transcription factor ATF2 is essential for development and tissue maintenance in mammals. In particular, ATF2 is highly expressed and activated in the brain and previous studies using mouse knockouts have confirmed its requirement in the cerebellum as well as in vestibular sense organs. Here we present the analysis of the requirement for ATF2 in CNS development in mouse embryos, specifically in the brainstem. We discovered that neuron-specific inactivation of ATF2 leads to significant loss of motoneurons of the hypoglossal, abducens and facial nuclei. While the generation of ATF2 mutant motoneurons appears normal during early development, they undergo caspase-dependent and independent cell death during later embryonic and foetal stages. The loss of these motoneurons correlates with increased levels of stress activated MAP kinases, JNK and p38, as well as aberrant accumulation of phosphorylated neurofilament proteins, NF-H and NF-M, known substrates for these kinases. This, together with other neuropathological phenotypes, including aberrant vacuolisation and lipid accumulation, indicates that deficiency in ATF2 leads to neurodegeneration of subsets of somatic and visceral motoneurons of the brainstem. It also confirms that ATF2 has a critical role in limiting the activities of stress kinases JNK and p38 which are potent inducers of cell death in the CNS.


Asunto(s)
Factor de Transcripción Activador 2/fisiología , Embrión de Mamíferos/citología , Neuronas Motoras/patología , Cráneo/inervación , Factor de Transcripción Activador 2/genética , Animales , Axones , Tronco Encefálico/citología , Tronco Encefálico/embriología , Fosfatasas de Especificidad Dual/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Regulación Enzimológica de la Expresión Génica/fisiología , Ratones , Fosforilación , Proteínas Proto-Oncogénicas c-jun/genética
6.
J Mol Biol ; 404(2): 183-201, 2010 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-20875427

RESUMEN

In fission yeast, Sty1 and Gcn2 are important protein kinases that regulate gene expression in response to amino acid starvation. The translation factor subunit Int6/eIF3e promotes Sty1-dependent response by increasing the abundance of Atf1, a transcription factor targeted by Sty1. While Gcn2 promotes expression of amino acid biosynthesis enzymes, the mechanism and function of Sty1 activation and Int6/eIF3e involvement during this nutrient stress are not understood. Here we show that mutants lacking sty1(+) or gcn2(+) display reduced viabilities during histidine depletion stress in a manner suppressible by the antioxidant N-acetyl cysteine, suggesting that these protein kinases function to alleviate endogenous oxidative damage generated during nutrient starvation. Int6/eIF3e also promotes cell viability by a mechanism involving the stimulation of Sty1 response to oxidative damage. In further support of these observations, microarray data suggest that, during histidine starvation, int6Δ increases the duration of Sty1-activated gene expression linked to oxidative stress due to the initial attenuation of Sty1-dependent transcription. Moreover, loss of gcn2 induces the expression of a new set of genes not activated in wild-type cells starved for histidine. These genes encode heatshock proteins, redox enzymes, and proteins involved in mitochondrial maintenance, in agreement with the idea that oxidative stress is imposed on gcn2Δ cells. Furthermore, early Sty1 activation promotes rapid Gcn2 activation on histidine starvation. These results suggest that Gcn2, Sty1, and Int6/eIF3e are functionally integrated and cooperate to respond to oxidative stress generated during histidine starvation.


Asunto(s)
Factor 3 de Iniciación Eucariótica/metabolismo , Histidina/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Factor de Transcripción Activador 1/genética , Factor de Transcripción Activador 1/metabolismo , Amitrol (Herbicida)/farmacología , Secuencia de Bases , ADN de Hongos/genética , Factor 3 de Iniciación Eucariótica/genética , Retroalimentación Fisiológica , Regulación Fúngica de la Expresión Génica , Genes Fúngicos , Sistema de Señalización de MAP Quinasas , Proteínas Quinasas Activadas por Mitógenos/genética , Modelos Biológicos , Mutación , Estrés Oxidativo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Schizosaccharomyces/efectos de los fármacos , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Transcripción Genética
7.
Genes Cancer ; 1(4): 316-330, 2010 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-20740050

RESUMEN

The transcription factor ATF2 was previously shown to be an ATM substrate. Upon phosphorylation by ATM, ATF2 exhibits a transcription-independent function in the DNA damage response through localization to DNA repair foci and control of cell cycle arrest. To assess the physiological significance of this phosphorylation, we generated ATF2 mutant mice in which the ATM phosphoacceptor sites (S472/S480) were mutated (ATF2(KI)). ATF2(KI) mice are more sensitive to ionizing radiation (IR) than wild-type (ATF2 (WT)) mice: following IR, ATF2(KI) mice exhibited higher levels of apoptosis in the intestinal crypt cells and impaired hepatic steatosis. Molecular analysis identified impaired activation of the cell cycle regulatory protein p21(Cip/Waf1) in cells and tissues of IR-treated ATF2(KI) mice, which was p53 independent. Analysis of tumor development in p53(KO) crossed with ATF2(KI) mice indicated a marked decrease in amount of time required for tumor development. Further, when subjected to two-stage skin carcinogenesis process, ATF2(KI) mice developed skin tumors faster and with higher incidence, which also progressed to the more malignant carcinomas, compared with the control mice. Using 3 mouse models, we establish the importance of ATF2 phosphorylation by ATM in the acute cellular response to DNA damage and maintenance of genomic stability.

8.
PLoS Genet ; 6(12): e1001258, 2010 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-21203491

RESUMEN

The transcription factor ATF2 has been shown to attenuate melanoma susceptibility to apoptosis and to promote its ability to form tumors in xenograft models. To directly assess ATF2's role in melanoma development, we crossed a mouse melanoma model (Nras(Q61K)::Ink4a⁻/⁻) with mice expressing a transcriptionally inactive form of ATF2 in melanocytes. In contrast to 7/21 of the Nras(Q61K)::Ink4a⁻/⁻ mice, only 1/21 mice expressing mutant ATF2 in melanocytes developed melanoma. Gene expression profiling identified higher MITF expression in primary melanocytes expressing transcriptionally inactive ATF2. MITF downregulation by ATF2 was confirmed in the skin of Atf2⁻/⁻ mice, in primary human melanocytes, and in 50% of human melanoma cell lines. Inhibition of MITF transcription by MITF was shown to be mediated by ATF2-JunB-dependent suppression of SOX10 transcription. Remarkably, oncogenic BRAF (V600E)-dependent focus formation of melanocytes on soft agar was inhibited by ATF2 knockdown and partially rescued upon shMITF co-expression. On melanoma tissue microarrays, a high nuclear ATF2 to MITF ratio in primary specimens was associated with metastatic disease and poor prognosis. Our findings establish the importance of transcriptionally active ATF2 in melanoma development through fine-tuning of MITF expression.


Asunto(s)
Factor de Transcripción Activador 2/metabolismo , Regulación Neoplásica de la Expresión Génica , Melanoma/metabolismo , Factor de Transcripción Asociado a Microftalmía/genética , Factor de Transcripción Activador 2/genética , Animales , Línea Celular Tumoral , Células Cultivadas , Regulación hacia Abajo , Femenino , Humanos , Masculino , Melanocitos/metabolismo , Melanoma/genética , Melanoma/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factor de Transcripción Asociado a Microftalmía/metabolismo , Piel/metabolismo , Piel/patología
9.
Curr Biol ; 19(22): 1907-11, 2009 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-19836238

RESUMEN

The Atf1 transcription factor is critical for directing stress-induced gene expression in fission yeast [1]. Upon exposure to stress, Atf1 is hyperphosphorylated by the mitogen-activated protein kinase (MAPK) Sty1 [2, 3], which results in its stabilization [4]. The resulting increase in Atf1 is vital for a robust response to certain stresses [4]. Here we investigated the mechanism by which phosphorylation stabilizes Atf1. We show that Atf1 is a target for the ubiquitin-proteasome system and that its degradation is dependent upon an SCF E3 ligase containing the F box protein Fbh1. Turnover of Atf1 requires an intact F box, but not DNA helicase activity of Fbh1. Accordingly, disruption of Fbh1 F box function suppresses phenotypes associated with loss of Atf1 phosphorylation. Atf1 and Fbh1 interact under basal conditions, but this binding is lost upon stress. In contrast, a version of Atf1 lacking all intact MAPK sites still interacts with Fbh1 upon stress, indicating that the association between the F box protein and substrate is disrupted by stress-induced phosphorylation. Most F box protein-substrate interactions described to date are mediated positively by phosphorylation [5]. Thus, our findings represent a novel means of regulating the interaction between an F box protein and its substrate. Moreover, Atf1 is the first target described in any organism for the Fbh1 F box protein.


Asunto(s)
Factor de Transcripción Activador 1/metabolismo , ADN Helicasas/metabolismo , Fosfoproteínas/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Estrés Fisiológico , Fosforilación , Unión Proteica
10.
J Biol Chem ; 284(36): 23989-94, 2009 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-19584054

RESUMEN

Fission yeast Atf1 is a member of the ATF/CREB basic leucine zipper (bZIP) family of transcription factors with strong homology to mammalian ATF2. Atf1 regulates transcription in response to stress stimuli and also plays a role in controlling heterochromatin formation and recombination. However, its DNA binding independent role is poorly studied. Here, we report that Atf1 has a distinct role in regulating the anaphase-promoting complex/cyclosome (APC/C) ubiquitin ligase. We have identified atf1(+) as a dose-dependent suppressor of apc5-1, a mutation causing mitotic arrest. Remarkably, the suppression is not dependent upon the bZIP domain and is therefore independent of the ability of Atf1 to bind DNA. Interestingly, Atf1 physically binds the APC/C in vivo. Furthermore, we show that addition of purified Atf1 proteins into a cell-free system stimulates ubiquitylation of cyclin B and securin by the APC/C. These results reveal a novel role for Atf1 in cell cycle control through protein-protein interaction.


Asunto(s)
Factor de Transcripción Activador 1/metabolismo , Mitosis/fisiología , Fosfoproteínas/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Factor de Transcripción Activador 1/genética , Ciclosoma-Complejo Promotor de la Anafase , Sistema Libre de Células/metabolismo , Ciclina B/genética , Ciclina B/metabolismo , Heterocromatina/genética , Heterocromatina/metabolismo , Fosfoproteínas/genética , Recombinación Genética/fisiología , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Complejos de Ubiquitina-Proteína Ligasa/genética , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Ubiquitina-Proteína Ligasas/genética
11.
J Biol Chem ; 283(32): 22063-75, 2008 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-18502752

RESUMEN

int-6 is one of the frequent integration sites for mouse mammary tumor viruses. Although its product is the e-subunit of translation initiation factor eIF3, other evidence indicates that it interacts with proteasomes or other proteins to regulate protein stability. Here we report that the fission yeast int6(+) is required for overcoming stress imposed by histidine starvation, using the drug 3-aminotriazole (3AT). Microarray and complementary Northern studies using wild-type, int6Delta or gcn2Delta mutants indicate that 3AT-treated wild-type yeast induces core environmental stress response (CESR) genes in addition to typical general amino acid control (GAAC) genes whose transcription depends on the eIF2 kinase, Gcn2. In agreement with this, Sty1 MAPK and its target transcription factor Atf1, which signal the CESR, are required for overcoming 3AT-induced starvation. We find that Int6 is required for maintaining the basal level of Atf1 and for rapid transcriptional activation of the CESR on 3AT-insult. Pulse labeling experiments indicate that int6Delta significantly slows down de novo protein synthesis. Moreover, Atf1 protein half-life was reduced in int6Delta cells. These effects would account for the compromised Atf1 activity on 3AT-induced stress. Thus, the robust protein synthesis promoted by intact eIF3 appears to be a part of the requisites for sound Sty1 MAPK-dependent signaling governed by the activity of the Atf1 transcription factor.


Asunto(s)
Factor 3 de Iniciación Eucariótica/metabolismo , Regulación Fúngica de la Expresión Génica , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Biosíntesis de Proteínas , Proteínas/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Aminoácidos/metabolismo , Amitrol (Herbicida)/farmacología , Factor 3 de Iniciación Eucariótica/genética , Perfilación de la Expresión Génica , Histidina/metabolismo , Familia de Multigenes , Mutación , Proteínas/genética , Schizosaccharomyces/efectos de los fármacos , Transducción de Señal
12.
Eukaryot Cell ; 7(6): 926-37, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18441123

RESUMEN

We undertook a screen to isolate determinants of drug resistance in fission yeast and identified two genes that, when mutated, result in sensitivity to a range of structurally unrelated compounds, some of them commonly used in the clinic. One gene, rav1, encodes the homologue of a budding yeast protein which regulates the assembly of the vacuolar ATPase. The second gene, lac1, encodes a homologue of genes that are required for ceramide synthesis. Both mutants are sensitive to the chemotherapeutic agent doxorubicin, and using the naturally fluorescent properties of this compound, we found that both rav1 and lac1 mutations result in an increased accumulation of the drug in cells. The multidrug-sensitive phenotype of rav1 mutants can be rescued by up-regulation of the lag1 gene which encodes a homologue of lac1, whereas overexpression of either lac1 or lag1 confers multidrug resistance on wild-type cells. These data suggest that changing the amount of ceramide synthase activity in cells can influence innate drug resistance. The function of Rav1 appears to be conserved, as we show that SpRav1 is part of a RAVE-like complex in fission yeast and that loss of rav1 results in defects in vacuolar (H(+))-ATPase activity. Thus, we conclude that loss of normal V-ATPase function results in an increased sensitivity of Schizosaccharomyces pombe cells to drugs. The rav1 and lac1 genes are conserved in both higher eukaryotes and various pathogenic fungi. Thus, our data could provide the basis for strategies to sensitize tumor cells or drug-resistant pathogenic fungi to drugs.


Asunto(s)
Antifúngicos/farmacología , Farmacorresistencia Fúngica , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/efectos de los fármacos , Schizosaccharomyces/metabolismo , ATPasas de Translocación de Protón Vacuolares/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Doxorrubicina/farmacología , Regulación Fúngica de la Expresión Génica , Calor , Mutación , Schizosaccharomyces/citología , Esteroles/análisis , ATPasas de Translocación de Protón Vacuolares/genética
13.
J Biol Chem ; 283(15): 9945-56, 2008 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-18252721

RESUMEN

The stress-induced expression of many fission yeast genes is dependent upon the Sty1 mitogen-activated protein kinase (MAPK) and Atf1 transcription factor. Atf1 is phosphorylated by Sty1 yet this phosphorylation is not required for stress-induced gene expression, suggesting another mechanism exists whereby Sty1 activates transcription. Here we show that Sty1 associates with Atf1-dependent genes and is recruited to both their promoters and coding regions. This occurs in response to various stress conditions coincident with the kinetics of the activation of Sty1. Association with promoters is not a consequence of increased nuclear accumulation of Sty1 nor does it require the phosphorylation of Atf1. However, recruitment is completely abolished in a mutant lacking Sty1 kinase activity. Both Atf1 and its binding partner Pcr1 are required for association of Sty1 with Atf1-dependent promoters, suggesting that this heterodimer must be intact for optimal recruitment of the MAPK. However, many Atf1-dependent genes are still expressed in a pcr1Delta mutant but with significantly delayed kinetics, thus providing an explanation for the relatively mild stress sensitivity displayed by pcr1Delta. Consistent with this delay, Sty1 and Atf1 cannot be detected at these promoters in this condition, suggesting that their association with chromatin is weak or transient in the absence of Pcr1.


Asunto(s)
Factor de Transcripción Activador 1/metabolismo , Factores de Transcripción Activadores/metabolismo , Núcleo Celular/metabolismo , Regulación Fúngica de la Expresión Génica/fisiología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosfoproteínas/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Factor de Transcripción Activador 1/genética , Factores de Transcripción Activadores/genética , Transporte Activo de Núcleo Celular/fisiología , Núcleo Celular/genética , Cromatina/genética , Cromatina/metabolismo , Eliminación de Gen , Proteínas Quinasas Activadas por Mitógenos/genética , Sistemas de Lectura Abierta/fisiología , Fosfoproteínas/genética , Fosforilación , Regiones Promotoras Genéticas/fisiología , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética
14.
Proc Natl Acad Sci U S A ; 105(5): 1674-9, 2008 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-18227516

RESUMEN

Activating transcription factor 2 (ATF2) regulates transcription in response to stress and growth factor stimuli. Here, we use a mouse model in which ATF2 was selectively deleted in keratinocytes. Crossing the conditionally expressed ATF2 mutant with K14-Cre mice (K14.ATF2(f/f)) resulted in selective expression of mutant ATF2 within the basal layer of the epidermis. When subjected to a two-stage skin carcinogenesis protocol [7,12-dimethylbenz[a]anthracene/phorbol 12-tetradecanoate 13-acetate (DMBA/TPA)], K14.ATF2(f/f) mice showed significant increases in both the incidence and prevalence of papilloma development compared with the WT ATF2 mice. Consistent with these findings, keratinocytes of K14.ATF2(f/f) mice exhibit greater anchorage-independent growth compared with ATF2 WT keratinocytes. Papillomas of K14.ATF2(f/f) mice exhibit reduced expression of presenilin1, which is associated with enhanced beta-catenin and cyclin D1, and reduced Notch1 expression. Significantly, a reduction of nuclear ATF2 and increased beta-catenin expression were seen in samples of squamous and basal cell carcinoma, as opposed to normal skin. Our data reveal that loss of ATF2 transcriptional activity serves to promote skin tumor formation, thereby indicating a suppressor activity of ATF2 in skin tumor formation.


Asunto(s)
Factor de Transcripción Activador 2/fisiología , Papiloma/genética , Neoplasias Cutáneas/genética , Proteínas Supresoras de Tumor/fisiología , 9,10-Dimetil-1,2-benzantraceno/toxicidad , Factor de Transcripción Activador 2/análisis , Factor de Transcripción Activador 2/genética , Animales , Apoptosis , Carcinógenos/toxicidad , Proliferación Celular , Ciclina D1/metabolismo , ADN/biosíntesis , Epidermis/efectos de los fármacos , Epidermis/metabolismo , Epidermis/patología , Queratinocitos/efectos de los fármacos , Queratinocitos/metabolismo , Queratinocitos/patología , Ratones , Ratones Noqueados , Papiloma/inducido químicamente , Papiloma/patología , Presenilina-1/metabolismo , Proteínas Proto-Oncogénicas c-myb/metabolismo , Receptor Notch1/metabolismo , Neoplasias Cutáneas/inducido químicamente , Neoplasias Cutáneas/patología , Acetato de Tetradecanoilforbol/toxicidad , Análisis de Matrices Tisulares , Proteínas Supresoras de Tumor/análisis , Proteínas Supresoras de Tumor/genética , beta Catenina/metabolismo
15.
Mol Biol Cell ; 19(1): 308-17, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18003976

RESUMEN

Cellular protection against oxidative damage is relevant to ageing and numerous diseases. We analyzed the diversity of genome-wide gene expression programs and their regulation in response to various types and doses of oxidants in Schizosaccharomyces pombe. A small core gene set, regulated by the AP-1-like factor Pap1p and the two-component regulator Prr1p, was universally induced irrespective of oxidant and dose. Strong oxidative stresses led to a much larger transcriptional response. The mitogen-activated protein kinase (MAPK) Sty1p and the bZIP factor Atf1p were critical for the response to hydrogen peroxide. A newly identified zinc-finger protein, Hsr1p, is uniquely regulated by all three major regulatory systems (Sty1p-Atf1p, Pap1p, and Prr1p) and in turn globally supports gene expression in response to hydrogen peroxide. Although the overall transcriptional responses to hydrogen peroxide and t-butylhydroperoxide were similar, to our surprise, Sty1p and Atf1p were less critical for the response to the latter. Instead, another MAPK, Pmk1p, was involved in surviving this stress, although Pmk1p played only a minor role in regulating the transcriptional response. These data reveal a considerable plasticity and differential control of regulatory pathways in distinct oxidative stress conditions, providing both specificity and backup for protection from oxidative damage.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Estrés Oxidativo/genética , Schizosaccharomyces/genética , Transducción de Señal/genética , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Genes Fúngicos , Peróxido de Hidrógeno/farmacología , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Oxidantes/farmacología , Estrés Oxidativo/efectos de los fármacos , Schizosaccharomyces/efectos de los fármacos , Schizosaccharomyces/enzimología , Proteínas de Schizosaccharomyces pombe/metabolismo , Transducción de Señal/efectos de los fármacos , Vitamina K 3/farmacología , terc-Butilhidroperóxido/farmacología
16.
Genes Dev ; 21(16): 2069-82, 2007 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-17699753

RESUMEN

The ATF2 transcription factor is phosphorylated by the stress-activated mitogen-activated protein kinases (MAPKs) JNK and p38. We show that this phosphorylation is essential for ATF2 function in vivo, since a mouse carrying mutations in the critical phosphorylation sites has a strong phenotype identical to that seen upon deletion of the DNA-binding domain. In addition, combining this mutant with a knockout of the ATF2 homolog, ATF7, results in embryonic lethality with severe abnormalities in the developing liver and heart. The mutant fetal liver is characterized by high levels of apoptosis in developing hepatocytes and haematopoietic cells. Furthermore, we observe a significant increase in active p38 due to loss of a negative feedback loop involving the ATF2-dependent transcriptional activation of MAPK phosphatases. In embryonic liver cells, this increase drives apoptosis, since it can be suppressed by chemical inhibition of p38. Our findings demonstrate the importance of finely regulating the activities of MAPKs during development.


Asunto(s)
Factor de Transcripción Activador 2/metabolismo , Hepatocitos/metabolismo , Hígado/embriología , Hígado/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Factor de Transcripción Activador 2/deficiencia , Factor de Transcripción Activador 2/genética , Factores de Transcripción Activadores/deficiencia , Factores de Transcripción Activadores/genética , Factores de Transcripción Activadores/metabolismo , Animales , Apoptosis/genética , Apoptosis/fisiología , Supervivencia Celular/genética , Supervivencia Celular/fisiología , Células Cultivadas , Retroalimentación , Femenino , Hepatocitos/citología , Hígado/citología , Sistema de Señalización de MAP Quinasas , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Mutantes , Ratones Transgénicos , Modelos Biológicos , Embarazo , Activación Transcripcional , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores
17.
Nucleic Acids Res ; 35(4): 1312-21, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17267404

RESUMEN

The transcriptional activation of CHOP (a CCAAT/enhancer-binding protein-related gene) by amino acid deprivation involves the activating transcription factor 2 (ATF2) and the activating transcription factor 4 (ATF4) binding the amino acid response element (AARE) within the promoter. Using a chromatin immunoprecipitation approach, we report that in vivo binding of phospho-ATF2 and ATF4 to CHOP AARE are associated with acetylation of histones H4 and H2B in response to amino acid starvation. A time course analysis reveals that ATF2 phosphorylation precedes histone acetylation, ATF4 binding and the increase in CHOP mRNA. We also show that ATF4 binding and histone acetylation are two independent events that are required for the CHOP induction upon amino acid starvation. Using ATF2-deficient mouse embryonic fibroblasts, we demonstrate that ATF2 is essential in the acetylation of histone H4 and H2B in vivo. The role of ATF2 on histone H4 acetylation is dependent on its binding to the AARE and can be extended to other amino acid regulated genes. Thus, ATF2 is involved in promoting the modification of the chromatin structure to enhance the transcription of a number of amino acid-regulated genes.


Asunto(s)
Factor de Transcripción Activador 2/fisiología , Aminoácidos/metabolismo , Histonas/metabolismo , Factor de Transcripción CHOP/genética , Activación Transcripcional , Acetilación , Factor de Transcripción Activador 4/metabolismo , Animales , Células Cultivadas , Ratones , Fosforilación , Elementos de Respuesta , Factor de Transcripción CHOP/biosíntesis
18.
J Biol Chem ; 282(8): 5160-70, 2007 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-17182615

RESUMEN

The Atf1 transcription factor plays a vital role in the ability of Schizosaccharomyces pombe cells to respond to various stress conditions. It regulates the expression of many genes in a stress-dependent manner, and its function is dependent upon the stress-activated MAPK, Sty1/Spc1. Moreover, Atf1 is directly phosphorylated by Sty1. Here we have investigated the role of such phosphorylation. Atf1 protein accumulates following stress, and this accumulation is lost in a strain defective in the Sty1 signaling pathway. In addition, accumulation of a mutant Atf1 protein that can no longer be phosphorylated is lost. Measurement of the half-life of Atf1 demonstrates that changes in Atf1 stability are responsible for this accumulation. Atf1 stability is also regulated by its heterodimeric partner, Pcr1. Similarly, Pcr1 levels are regulated by Atf1. Thus multiple pathways exist that ensure that Atf1 levels are appropriately regulated. Phosphorylation of Atf1 is important for cells to mount a robust response to H(2)O(2) stress, because the Atf1 phospho-mutant displays sensitivity to this stress, and induction of gene expression is lower than that observed in wild-type cells. Surprisingly, however, loss of Atf1 phosphorylation does not lead to the complete loss of stress-activated expression of Atf1 target genes. Accordingly, the Atf1 phospho-mutant does not display the same overall stress sensitivities as the atf1 deletion mutant. Taken together, these data suggest that Sty1 phosphorylation of Atf1 is not required for activation of Atf1 per se but rather for modulating its stability.


Asunto(s)
Factor de Transcripción Activador 1/metabolismo , Factores de Transcripción Activadores/metabolismo , Sistema de Señalización de MAP Quinasas , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosfoproteínas/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Factor de Transcripción Activador 1/genética , Factores de Transcripción Activadores/genética , Dimerización , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Regulación Fúngica de la Expresión Génica/genética , Peróxido de Hidrógeno/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/genética , Proteínas Quinasas Activadas por Mitógenos/genética , Presión Osmótica/efectos de los fármacos , Oxidantes/farmacología , Fosfoproteínas/genética , Fosforilación/efectos de los fármacos , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Procesamiento Proteico-Postraduccional/genética , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Eliminación de Secuencia , Sorbitol/farmacología , Edulcorantes/farmacología
19.
Proteomics ; 6(17): 4755-64, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16897687

RESUMEN

There is considerable public concern regarding the health effects of exposure to low-frequency electromagnetic fields. In addition, the association between exposure and disease incidence or the possible biological effects of exposure are unclear. Using 2D-DIGE and MS in a blind study, we have investigated the effects of static and oscillating extremely low-frequency electromagnetic fields (ELF EMFs) on the proteomes of wild type Schizosaccharomyces pombe and a Sty1p deletion mutant which displays increased sensitivity to a variety of cellular stresses. Whilst this study identifies a number of protein isoforms that display significant differential expression across experimental conditions, there was no correlation between their patterns of expression and the ELF EMF exposure regimen. We conclude that there are no significant effects of either static or oscillating EMF on the yeast proteome at the sensitivity afforded by 2D-DIGE. We hypothesise that the proteins identified must be sensitive to subtle changes in culture and/or handling conditions, and that the identification of these proteins in other proteomic studies should be treated with some caution when the results of such studies are interpreted in a biological context.


Asunto(s)
Campos Electromagnéticos , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Schizosaccharomyces/efectos de la radiación , Electroforesis en Gel Bidimensional , Espectrometría de Masas , Proteómica , Proteínas de Schizosaccharomyces pombe/química , Electricidad Estática
20.
Proteomics ; 6(9): 2772-96, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16548067

RESUMEN

Using an integrated approach incorporating proteomics, metabolomics and published mRNA data, we have investigated the effects of hydrogen peroxide on wild type and a Sty1p-deletion mutant of the fission yeast Schizosaccharomyces pombe. Differential protein expression analysis based on the modification of proteins with matched fluorescent labelling reagents (2-D-DIGE) is the foundation of the quantitative proteomics approach. This study identifies 260 differentially expressed protein isoforms from 2-D-DIGE gels using MALDI MS and reveals the complexity of the cellular response to oxidative stress and the dependency on the Sty1p stress-activated protein kinase. We show the relationship between these protein changes and mRNA expression levels identified in a parallel whole genome study, and discuss the regulatory mechanisms involved in protecting cells against hydrogen peroxide and the involvement of Sty1p-dependent stress-activated protein kinase signalling. Metabolomic profiling of 29 intermediates using 1H NMR was also conducted alongside the protein analysis using the same sample sets, allowing examination of how the protein changes might affect the metabolic pathways and biological processes involved in the oxidative stress response. This combined analysis identifies a number of interlinked metabolic pathways that exhibit stress- and Sty1-dependent patterns of regulation.


Asunto(s)
Peróxido de Hidrógeno/farmacología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Estrés Oxidativo/fisiología , Proteómica , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Electroforesis en Gel Bidimensional , Eliminación de Gen , Regulación de la Expresión Génica , Peróxido de Hidrógeno/metabolismo , Espectrometría de Masas , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/efectos de los fármacos , Proteínas Quinasas Activadas por Mitógenos/genética , Oxidantes/metabolismo , Oxidantes/farmacología , Estrés Oxidativo/efectos de los fármacos , Isoformas de Proteínas/efectos de los fármacos , Isoformas de Proteínas/metabolismo , Procesamiento Proteico-Postraduccional , ARN Mensajero/biosíntesis , Schizosaccharomyces/efectos de los fármacos , Proteínas de Schizosaccharomyces pombe/efectos de los fármacos , Proteínas de Schizosaccharomyces pombe/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...