Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
Matrix Biol ; 133: 14-32, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39098433

RESUMEN

BACKGROUND: Members of the cellular communication network family (CCN) of matricellular proteins, like CCN1, have long been implicated in the regulation of cellular processes underlying wound healing, tissue fibrogenesis, and collagen dynamics. While many studies suggest antifibrotic actions for CCN1 in the adult heart through the promotion of myofibroblast senescence, they largely relied on exogenous supplementation strategies in in vivo models of cardiac injury where its expression is already induced-which may confound interpretation of its function in this process. The objective of this study was to interrogate the role of the endogenous protein on fibroblast function, collagen structural dynamics, and its associated impact on cardiac fibrosis after myocardial infarction (MI). METHODS/RESULTS: Here, we employed CCN1 loss-of-function methodologies, including both in vitro siRNA-mediated depletion and in vivo fibroblast-specific knockout mice to assess the role of the endogenous protein on cardiac fibroblast fibrotic signaling, and its involvement in acute scar formation after MI. In vitro depletion of CCN1 reduced cardiac fibroblast senescence and proliferation. Although depletion of CCN1 decreased the expression of collagen processing and stabilization enzymes (i.e., P4HA1, PLOD1, and PLOD2), it did not inhibit myofibroblast induction or type I collagen synthesis. Alone, fibroblast-specific removal of CCN1 did not negatively impact ventricular performance or myocardial collagen content but did contribute to disorganization of collagen fibrils and increased matrix compliance. Similarly, Ccn1 ablated animals subjected to MI showed no discernible alterations in cardiac structure or function one week after permanent coronary artery ligation, but exhibited marked increases in incidence of mortality and cardiac rupture. Consistent with our findings that CCN1 depletion does not assuage myofibroblast conversion or type I collagen synthesis in vitro, Ccn1 knockout animals revealed no measurable differences in collagen scar width or mass compared to controls; however, detailed structural analyses via SHG and TEM of scar regions revealed marked alterations in their scar collagen topography-exhibiting changes in numerous macro- and micro-level collagen architectural attributes. Specifically, Ccn1 knockout mice displayed heightened ECM structural complexity in post-MI scar regions, including diminished local alignment and heightened tortuosity of collagen fibers, as well as reduced organizational coherency, packing, and size of collagen fibrils. Associated with these changes in ECM topography with the loss of CCN1 were reductions in fibroblast-matrix interactions, as evidenced by reduced fibroblast nuclear and cellular deformation in vivo and reduced focal-adhesion formation in vitro; findings that ultimately suggest CCN1's ability to influence fibroblast-led collagen alignment may in part be credited to its capacity to augment fibroblast-matrix interactions. CONCLUSIONS: These findings underscore the pivotal role of endogenous CCN1 in the scar formation process occurring after MI, directing the appropriate arrangement of the extracellular matrix's collagenous components in the maturing scar-shaping the mechanical properties that support its structural stability. While this suggests an adaptive role for CCN1 in regulating collagen structural attributes crucial for supporting scar integrity post MI, the long-term protracted expression of CCN1 holds maladaptive implications, potentially diminishing collagen structural complexity and compliance in non-infarct regions.


Asunto(s)
Cicatriz , Colágeno , Proteína 61 Rica en Cisteína , Fibrosis , Infarto del Miocardio , Miofibroblastos , Animales , Humanos , Masculino , Ratones , Cicatriz/metabolismo , Cicatriz/patología , Cicatriz/genética , Colágeno/metabolismo , Colágeno/genética , Proteína 61 Rica en Cisteína/metabolismo , Proteína 61 Rica en Cisteína/genética , Modelos Animales de Enfermedad , Fibroblastos/metabolismo , Fibroblastos/patología , Ratones Noqueados , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Infarto del Miocardio/genética , Miocardio/metabolismo , Miocardio/patología , Miofibroblastos/metabolismo , Miofibroblastos/patología , Transducción de Señal
2.
Biologicals ; 87: 101779, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38908364

RESUMEN

The evaluation of Naturally Occurring Endotoxins (NOEs) for Low Endotoxin Recovery (LER) studies has been a topic in the industry and regulatory agencies have been hesitant to endorse NOE use in LER studies over purified Lipopolysaccharide (LPS) standards such as Control Standard Endotoxin (CSE) or Reference Standard Endotoxin (RSE). In a recent study involving 11 BioPhorum member companies across 13 sites, NOEs prepared in high and low nutrient conditions were evaluated in two common monoclonal antibody buffer formulations: 10 mM Sodium Citrate, 0.05 % Polysorbate 80, pH 6.0 and 20 mM Histidine, 0.05 % Polysorbate 80, pH 6.0. 12 g-negative bacterial isolates were used to prepare NOE analytes, which were spiked into the formulation buffers. Additionally, the NOEs were spiked into Limulus Amebocyte Lysate (LAL) reagent water as controls and purified LPS into the citrate/polysorbate buffer as the LER control. Results showed the average of three runs per organism was >50 % recovery, at the conclusion of the 7-day period, regardless of nutrient culture preparation conditions. Furthermore, purified LPS controls became undetectable (<50 % recovery) in the citrate/polysorbate buffer, highlighting the presence of LER. These findings highlight the potential value of using NOEs from relevant manufacturing facilities to assess overall risk when purified LPS recovery is insufficient.


Asunto(s)
Endotoxinas , Prueba de Limulus , Lipopolisacáridos , Endotoxinas/análisis , Prueba de Limulus/métodos , Estándares de Referencia , Animales , Anticuerpos Monoclonales/química , Humanos , Polisorbatos/química , Concentración de Iones de Hidrógeno
3.
Artículo en Inglés | MEDLINE | ID: mdl-37426695

RESUMEN

Introduction: Polychlorinated biphenyls (PCBs) are persistent environmental toxicants that have been implicated in numerous health disorders including liver diseases such as non-alcoholic fatty liver disease (NAFLD). Toxicant-associated NAFLD, also known as toxicant-associated fatty liver disease (TAFLD), consists of a spectrum of disorders ranging from steatosis and steatohepatitis to fibrosis and hepatocellular carcinoma. Previously, our group demonstrated that 12-week exposure to the PCB mixture, Aroclor 1260, exacerbated steatohepatitis in high-fat diet (HFD)-fed mice; however, the longer-term effects of PCBs on TAFLD remain to be elucidated. This study aims to examine the longer-term effects of Aroclor 1260 (>30 weeks) in a diet-induced obesity model to better understand how duration of exposure can impact TAFLD. Methods: Male C57BL/6 mice were exposed to Aroclor 1260 (20 mg/kg) or vehicle control by oral gavage at the beginning of the study period and fed either a low-fat diet (LFD) or HFD throughout the study period. Results: Aroclor 1260 exposure (>30 weeks) led to steatohepatitis only in LFD-fed mice. Several Aroclor 1260 exposed LFD-fed mice also developed hepatocellular carcinoma (25%), which was absent in HFD-fed mice. The LFD+Aroclor1260 group also exhibited decreased hepatic Cyp7a1 expression and increased pro-fibrotic Acta2 expression. In contrast, longer term Aroclor 1260 exposure in conjunction with HFD did not exacerbate steatosis or inflammatory responses beyond those observed with HFD alone. Further, hepatic xenobiotic receptor activation by Aroclor 1260 was absent at 31 weeks post exposure, suggesting PCB redistribution to the adipose and other extra-hepatic tissues with time. Discussion: Overall, the results demonstrated that longer-term PCB exposure worsened TAFLD outcomes independent of HFD feeding and suggests altered energy metabolism as a potential mechanism fueling PCB mediated toxicity without dietary insult. Additional research exploring mechanisms for these longer-term PCB mediated toxicity in TAFLD is warranted.

4.
J Sport Health Sci ; 11(4): 479-494, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35688382

RESUMEN

Although the structural and functional effects of exercise on the heart are well established, the metabolic changes that occur in the heart during and after exercise remain unclear. In this study, we used metabolomics to assess time-dependent changes in the murine cardiac metabolome following 1 session of treadmill exercise. After the exercise bout, we also recorded blood lactate, glucose, and ketone body levels and measured cardiac mitochondrial respiration. In both male and female mice, moderate- and high-intensity exercise acutely increased blood lactate levels. In both sexes, low- and moderate-intensity exercise augmented circulating 3-hydroxybutryrate levels immediately after the exercise bout; however, only in female mice did high-intensity exercise increase 3-hydroxybutyrate levels, with significant increases occurring 1 h after the exercise session. Untargeted metabolomics analyses of sedentary female and male hearts suggest considerable sex-dependent differences in basal cardiac metabolite levels, with female hearts characterized by higher levels of pantothenate, pyridoxamine, homoarginine, tryptophan, and several glycerophospholipid and sphingomyelin species and lower levels of numerous metabolites, including acetyl coenzyme A, glucuronate, gulonate, hydroxyproline, prolyl-hydroxyproline, carnosine, anserine, and carnitinylated and glycinated species, as compared with male hearts. Immediately after a bout of treadmill exercise, both male and female hearts had higher levels of corticosterone; however, female mice showed more extensive exercise-induced changes in the cardiac metabolome, characterized by significant, time-dependent changes in amino acids (e.g., serine, alanine, tyrosine, tryptophan, branched-chain amino acids) and the ketone body 3-hydroxybutyrate. Results from experiments using isolated cardiac mitochondria suggest that high-intensity treadmill exercise does not acutely affect respiration or mitochondrial coupling; however, female cardiac mitochondria demonstrate generally higher adenosine diphosphate sensitivity compared with male cardiac mitochondria. Collectively, these findings in mice reveal key sex-dependent differences in cardiac metabolism and suggest that the metabolic network in the female heart is more responsive to physiological stress caused by exercise.


Asunto(s)
Condicionamiento Físico Animal , Triptófano , Ácido 3-Hidroxibutírico/metabolismo , Animales , Femenino , Lactatos/metabolismo , Masculino , Ratones , Mitocondrias Cardíacas/metabolismo , Condicionamiento Físico Animal/fisiología , Triptófano/metabolismo
5.
Am J Physiol Heart Circ Physiol ; 323(1): H146-H164, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35622533

RESUMEN

The goal of this study was to develop an atlas of the metabolic, transcriptional, and proteomic changes that occur with pregnancy in the maternal heart. Timed pregnancy studies in FVB/NJ mice revealed a significant increase in heart size by day 8 of pregnancy (midpregnancy; MP), which was sustained throughout the rest of the term compared with nonpregnant control mice. Cardiac hypertrophy and myocyte cross-sectional area were highest 7 days after birth (postbirth; PB) and were associated with significant increases in end-diastolic and end-systolic left ventricular volumes and higher cardiac output. Metabolomics analyses revealed that by day 16 of pregnancy (late pregnancy; LP) metabolites associated with nitric oxide production as well as acylcholines, sphingomyelins, and fatty acid species were elevated, which coincided with a lower activation state of phosphofructokinase and higher levels of pyruvate dehydrogenase kinase 4 (Pdk4) and ß-hydroxybutyrate dehydrogenase 1 (Bdh1). In the postpartum period, urea cycle metabolites, polyamines, and phospholipid levels were markedly elevated in the maternal heart. Cardiac transcriptomics in LP revealed significant increases in not only Pdk4 and Bdh1 but also genes that regulate glutamate and ketone body oxidation, which were preceded in MP by higher expression of transcripts controlling cell proliferation and angiogenesis. Proteomics analysis of the maternal heart in LP and PB revealed significant reductions in several contractile filament and mitochondrial subunit complex proteins. Collectively, these findings describe the coordinated molecular changes that occur in the maternal heart during and after pregnancy.NEW & NOTEWORTHY Little is known of the underlying molecular and cellular mechanisms that contribute to pregnancy-induced cardiac growth. Several lines of evidence suggest that changes in cardiac metabolism may contribute. Here, we provide a comprehensive metabolic atlas of the metabolomic, proteomic, and transcriptomic changes occurring in the maternal heart. We show that pregnancy-induced cardiac growth is associated with changes in glycerophospholipid, nucleotide, and amino acid metabolism, with reductions in cardiac glucose catabolism. Collectively, these results suggest that substantial metabolic changes occur in the maternal heart during and after pregnancy.


Asunto(s)
Corazón , Proteómica , Animales , Cardiomegalia/metabolismo , Femenino , Ratones , Mitocondrias Cardíacas/metabolismo , Miocardio/metabolismo , Oxidación-Reducción , Embarazo
6.
Matrix Biol ; 109: 49-69, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35346795

RESUMEN

The cardiac extracellular matrix plays essential roles in homeostasis and injury responses. Although the role of fibrillar collagens have been thoroughly documented, the functions of non-fibrillar collagen members remain underexplored. These include a distinct group of non-fibrillar collagens, termed, fibril-associated collagens with interrupted triple helices (FACITs). Recent reports of collagen type XIX (encoded by Col19a1) expression in adult heart and evidence of its enhanced expression in cardiac ischemia suggest important functions for this FACIT in cardiac ECM structure and function. Here, we examined the cellular source of collagen XIX in the adult murine heart and evaluated its involvement in ECM structure and ventricular function. Immunodetection of collagen XIX in fractionated cardiovascular cell lineages revealed fibroblasts and smooth muscle cells as the primary sources of collagen XIX in the heart. Based on echocardiographic and histologic analyses, Col19a1 null (Col19a1N/N) mice exhibited reduced systolic function, thinning of left ventricular walls, and increased cardiomyocyte cross-sectional areas-without gross changes in myocardial collagen content or basement membrane morphology. Col19a1N/N cardiac fibroblasts had augmented expression of several enzymes involved in the synthesis and stability of fibrillar collagens, including PLOD1 and LOX. Furthermore, second harmonic generation-imaged ECM derived from Col19a1N/N cardiac fibroblasts, and transmission electron micrographs of decellularized hearts from Col19a1N/N null animals, showed marked reductions in fibrillar collagen structural organization. Col19a1N/N mice also displayed enhanced phosphorylation of focal adhesion kinase (FAK), signifying de-repression of the FAK pathway-a critical mediator of cardiomyocyte hypertrophy. Collectively, we show that collagen XIX, which had a heretofore unknown role in the mammalian heart, participates in the regulation of cardiac structure and function-potentially through modulation of ECM fibrillar collagen structural organization. Further, these data suggest that this FACIT may modify ECM superstructure via acting at the level of the fibroblast to regulate their expression of collagen synthetic and stabilization enzymes.


Asunto(s)
Colágeno , Colágenos Asociados a Fibrillas , Animales , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Colágenos Asociados a Fibrillas/metabolismo , Colágenos Fibrilares/metabolismo , Mamíferos/metabolismo , Ratones , Función Ventricular
7.
Toxicol Sci ; 185(1): 64-76, 2021 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-34718823

RESUMEN

Benzene is a ubiquitous environmental pollutant abundant in household products, petrochemicals, and cigarette smoke. Benzene is a well-known carcinogen in humans and experimental animals; however, little is known about the cardiovascular toxicity of benzene. Recent population-based studies indicate that benzene exposure is associated with an increased risk for heart failure. Nonetheless, it is unclear whether benzene exposure is sufficient to induce and/or exacerbate heart failure. We examined the effects of benzene (50 ppm, 6 h/day, 5 days/week, and 6 weeks) or high-efficiency particulate absorbing-filtered air exposure on transverse aortic constriction (TAC)-induced pressure overload in male C57BL/6J mice. Our data show that benzene exposure had no effect on cardiac function in the Sham group; however, it significantly compromised cardiac function as depicted by a significant decrease in fractional shortening and ejection fraction, as compared with TAC/Air-exposed mice. RNA-seq analysis of the cardiac tissue from the TAC/benzene-exposed mice showed a significant increase in several genes associated with adhesion molecules, cell-cell adhesion, inflammation, and stress response. In particular, neutrophils were implicated in our unbiased analyses. Indeed, immunofluorescence studies showed that TAC/benzene exposure promotes infiltration of CD11b+/S100A8+/myeloperoxidase+-positive neutrophils in the hearts by 3-fold. In vitro, the benzene metabolites, hydroquinone, and catechol, induced the expression of P-selectin in cardiac microvascular endothelial cells by 5-fold and increased the adhesion of neutrophils to these endothelial cells by 1.5- to 2.0-fold. Benzene metabolite-induced adhesion of neutrophils to the endothelial cells was attenuated by anti-P-selectin antibody. Together, these data suggest that benzene exacerbates heart failure by promoting endothelial activation and neutrophil recruitment.


Asunto(s)
Insuficiencia Cardíaca , Remodelación Ventricular , Animales , Benceno/toxicidad , Células Endoteliales/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Remodelación Ventricular/fisiología
8.
Am J Physiol Heart Circ Physiol ; 321(6): H1056-H1073, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34623181

RESUMEN

Despite significant improvements in reperfusion strategies, acute coronary syndromes all too often culminate in a myocardial infarction (MI). The consequent MI can, in turn, lead to remodeling of the left ventricle (LV), the development of LV dysfunction, and ultimately progression to heart failure (HF). Accordingly, an improved understanding of the underlying mechanisms of MI remodeling and progression to HF is necessary. One common approach to examine MI pathology is with murine models that recapitulate components of the clinical context of acute coronary syndrome and subsequent MI. We evaluated the different approaches used to produce MI in mouse models and identified opportunities to consolidate methods, recognizing that reperfused and nonreperfused MI yield different responses. The overall goal in compiling this consensus statement is to unify best practices regarding mouse MI models to improve interpretation and allow comparative examination across studies and laboratories. These guidelines will help to establish rigor and reproducibility and provide increased potential for clinical translation.


Asunto(s)
Investigación Biomédica/normas , Insuficiencia Cardíaca , Infarto del Miocardio , Daño por Reperfusión Miocárdica , Animales , Consenso , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/fisiopatología , Insuficiencia Cardíaca/terapia , Masculino , Ratones , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Infarto del Miocardio/terapia , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Daño por Reperfusión Miocárdica/fisiopatología , Daño por Reperfusión Miocárdica/terapia , Reperfusión , Factores Sexuales , Especificidad de la Especie
9.
Am J Physiol Heart Circ Physiol ; 321(4): H784-H797, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34533403

RESUMEN

Coenzyme A (CoA) is an essential cofactor required for intermediary metabolism. Perturbations in homeostasis of CoA have been implicated in various pathologies; however, whether CoA homeostasis is changed and the extent to which CoA levels contribute to ventricular function and remodeling during pressure overload has not been explored. In this study, we sought to assess changes in CoA biosynthetic pathway during pressure overload and determine the impact of limiting CoA on cardiac function. We limited cardiac CoA levels by deleting the rate-limiting enzyme in CoA biosynthesis, pantothenate kinase 1 (Pank1). We found that constitutive, cardiomyocyte-specific Pank1 deletion (cmPank1-/-) significantly reduced PANK1 mRNA, PANK1 protein, and CoA levels compared with Pank1-sufficient littermates (cmPank1+/+) but exerted no obvious deleterious impact on the mice at baseline. We then subjected both groups of mice to pressure overload-induced heart failure. Interestingly, there was more ventricular dilation in cmPank1-/- during the pressure overload. To explore potential mechanisms contributing to this phenotype, we performed transcriptomic profiling, which suggested a role for Pank1 in regulating fibrotic and metabolic processes during the pressure overload. Indeed, Pank1 deletion exacerbated cardiac fibrosis following pressure overload. Because we were interested in the possibility of early metabolic impacts in response to pressure overload, we performed untargeted metabolomics, which indicated significant changes to metabolites involved in fatty acid and ketone metabolism, among other pathways. Collectively, our study underscores the role of elevated CoA levels in supporting fatty acid and ketone body oxidation, which may be more important than CoA-driven, enzyme-independent acetylation in the failing heart.NEW & NOTEWORTHY Changes in CoA homeostasis have been implicated in a variety of metabolic diseases; however, the extent to which changes in CoA homeostasis impacts remodeling has not been explored. We show that limiting cardiac CoA levels via PANK deletion exacerbated ventricular remodeling during pressure overload. Our results suggest that metabolic alterations, rather than structural alterations, associated with Pank1 deletion may underlie the exacerbated cardiac phenotype during pressure overload.


Asunto(s)
Metabolismo Energético , Miocardio/enzimología , Fosfotransferasas (Aceptor de Grupo Alcohol)/deficiencia , Disfunción Ventricular Izquierda/enzimología , Función Ventricular Izquierda , Remodelación Ventricular , Animales , Aorta/fisiopatología , Aorta/cirugía , Apoptosis , Presión Arterial , Coenzima A/metabolismo , Modelos Animales de Enfermedad , Femenino , Fibrosis , Eliminación de Gen , Humanos , Masculino , Metaboloma , Ratones Endogámicos C57BL , Ratones Noqueados , Miocardio/patología , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Transcriptoma , Disfunción Ventricular Izquierda/genética , Disfunción Ventricular Izquierda/patología , Disfunción Ventricular Izquierda/fisiopatología
12.
PLoS One ; 15(11): e0242250, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33253217

RESUMEN

RATIONALE: The beta-O-linkage of N-acetylglucosamine (i.e., O-GlcNAc) to proteins is a pro-adaptive response to cellular insults. To this end, increased protein O-GlcNAcylation improves short-term survival of cardiomyocytes subjected to acute injury. This observation has been repeated by multiple groups and in multiple models; however, whether increased protein O-GlcNAcylation plays a beneficial role in more chronic settings remains an open question. OBJECTIVE: Here, we queried whether increasing levels of cardiac protein O-GlcNAcylation would be beneficial during infarct-induced heart failure. METHODS AND RESULTS: To achieve increased protein O-GlcNAcylation, we targeted Oga, the gene responsible for removing O-GlcNAc from proteins. Here, we generated mice with cardiomyocyte-restricted, tamoxifen-inducible haploinsufficient Oga gene. In the absence of infarction, we observed a slight reduction in ejection fraction in Oga deficient mice. Overall, Oga reduction had no major impact on ventricular function. In additional cohorts, mice of both sexes and both genotypes were subjected to infarct-induced heart failure and followed for up to four weeks, during which time cardiac function was assessed via echocardiography. Contrary to our prediction, the Oga deficient mice exhibited exacerbated-not improved-cardiac function at one week following infarction. When the observation was extended to 4 wk post-MI, this acute exacerbation was lost. CONCLUSIONS: The present findings, coupled with our previous work, suggest that altering the ability of cardiomyocytes to either add or remove O-GlcNAc modifications to proteins exacerbates early infarct-induced heart failure. We speculate that more nuanced approaches to regulating O-GlcNAcylation are needed to understand its role-and, in particular, the possibility of cycling, in the pathophysiology of the failing heart.


Asunto(s)
Infarto del Miocardio/patología , Miocardio/enzimología , N-Acetilglucosaminiltransferasas/genética , Disfunción Ventricular/etiología , Animales , Ecocardiografía , Femenino , Glicosilación , Haploinsuficiencia , Corazón/fisiología , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/patología , Humanos , Masculino , Ratones , Ratones Noqueados , Persona de Mediana Edad , Infarto del Miocardio/complicaciones , Miocardio/metabolismo , Miocardio/patología , N-Acetilglucosaminiltransferasas/deficiencia , N-Acetilglucosaminiltransferasas/metabolismo , Tamoxifeno/farmacología , Regulación hacia Arriba , Función Ventricular/efectos de los fármacos
13.
Am J Physiol Heart Circ Physiol ; 319(1): H109-H122, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32442025

RESUMEN

Although cell therapy-mediated cardiac repair offers promise for treatment/management of heart failure, lack of fundamental understanding of how cell therapy works limits its translational potential. In particular, whether reparative cells from failing hearts differ from cells derived from nonfailing hearts remains unexplored. Here, we assessed differences between cardiac mesenchymal cells (CMC) derived from failing (HF) versus nonfailing (Sham) hearts and whether the source of donor cells (i.e., from HF vs. Sham) limits reparative capacity, particularly when administered late after infarction. To determine the impact of the donor source of CMCs, we characterized the transcriptional profile of CMCs isolated from sham (Sham-CMC) and failing (HF-CMC) hearts. RNA-seq analysis revealed unique transcriptional signatures in Sham-CMC and HF-CMC, suggesting that the donor source impacts CMC. To determine whether the donor source affects reparative potential, C57BL6/J female mice were subjected to 60 min of regional myocardial ischemia and then reperfused for 35 days. In a randomized, controlled, and blinded fashion, vehicle, HF-CMC, or Sham-CMC were injected into the lumen of the left ventricle at 35 days post-MI. An additional 5 weeks later, cardiac function was assessed by echocardiography, which indicated that delayed administration of Sham-CMC and HF-CMC attenuated ventricular dilation. We also determined whether Sham-CMC and HF-CMC treatments affected ventricular histopathology. Our data indicate that the donor source (nonfailing vs. failing hearts) affects certain aspects of CMC, and these insights may have implications for future studies. Our data indicate that delayed administration of CMC limits ventricular dilation and that the source of CMC may influence their reparative actions.NEW & NOTEWORTHY Most preclinical studies have used only cells from healthy, nonfailing hearts. Whether donor condition (i.e., heart failure) impacts cells used for cell therapy is not known. We directly tested whether donor condition impacted the reparative effects of cardiac mesenchymal cells in a chronic model of myocardial infarction. Although cells from failing hearts differed in multiple aspects, they retained the potential to limit ventricular remodeling.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas/patología , Daño por Reperfusión Miocárdica/terapia , Función Ventricular , Animales , Células Cultivadas , Femenino , Ventrículos Cardíacos/citología , Ventrículos Cardíacos/patología , Masculino , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Endogámicos C57BL , Contracción Miocárdica , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Transcriptoma
14.
J Mol Cell Cardiol ; 137: 93-106, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31639389

RESUMEN

Voltage-gated potassium (Kv) channels control myocardial repolarization. Pore-forming Kvα proteins associate with intracellular Kvß subunits, which bind pyridine nucleotides with high affinity and differentially regulate channel trafficking, plasmalemmal localization and gating properties. Nevertheless, it is unclear how Kvß subunits regulate myocardial K+ currents and repolarization. Here, we tested the hypothesis that Kvß2 subunits regulate the expression of myocardial Kv channels and confer redox sensitivity to Kv current and cardiac repolarization. Co-immunoprecipitation and in situ proximity ligation showed that in cardiac myocytes, Kvß2 interacts with Kv1.4, Kv1.5, Kv4.2, and Kv4.3. Cardiac myocytes from mice lacking Kcnab2 (Kvß2-/-) had smaller cross sectional areas, reduced sarcolemmal abundance of Kvα binding partners, reduced Ito, IK,slow1, and IK,slow2 densities, and prolonged action potential duration compared with myocytes from wild type mice. These differences in Kvß2-/- mice were associated with greater P wave duration and QT interval in electrocardiograms, and lower ejection fraction, fractional shortening, and left ventricular mass in echocardiographic and morphological assessments. Direct intracellular dialysis with a high NAD(P)H:NAD(P)+ accelerated Kv inactivation in wild type, but not Kvß2-/- myocytes. Furthermore, elevated extracellular levels of lactate increased [NADH]i and prolonged action potential duration in wild type cardiac myocytes and perfused wild type, but not Kvß2-/-, hearts. Taken together, these results suggest that Kvß2 regulates myocardial electrical activity by supporting the functional expression of proteins that generate Ito and IK,slow, and imparting redox and metabolic sensitivity to Kv channels, thereby coupling cardiac repolarization to myocyte metabolism.


Asunto(s)
Activación del Canal Iónico , Miocardio/metabolismo , Subunidades de Proteína/metabolismo , Canales de Potasio de la Superfamilia Shaker/metabolismo , Potenciales de Acción , Animales , Pruebas de Función Cardíaca , Ácido Láctico/metabolismo , Ratones , Ratones Endogámicos C57BL , Miocitos Cardíacos/metabolismo , Nucleótidos/metabolismo , Oxidación-Reducción , Piridinas/metabolismo , Canales de Potasio Shal/metabolismo
15.
Dis Model Mech ; 12(7)2019 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-31300413

RESUMEN

Cleft palate is a common birth defect, occurring in approximately 1 in 1000 live births worldwide. Known etiological mechanisms of cleft palate include defects within developing palate shelf tissues, defects in mandibular growth and defects in spontaneous fetal mouth movement. Until now, experimental studies directly documenting fetal mouth immobility as an underlying cause of cleft palate have been limited to models lacking neurotransmission. This study extends the range of anomalies directly demonstrated to have fetal mouth movement defects correlated with cleft palate. Here, we show that mouse embryos deficient in retinoic acid (RA) have mispatterned pharyngeal nerves and skeletal elements that block spontaneous fetal mouth movement in utero Using X-ray microtomography, in utero ultrasound video, ex vivo culture and tissue staining, we demonstrate that proper retinoid signaling and pharyngeal patterning are crucial for the fetal mouth movement needed for palate formation. Embryos with deficient retinoid signaling were generated by stage-specific inactivation of retinol dehydrogenase 10 (Rdh10), a gene crucial for the production of RA during embryogenesis. The finding that cleft palate in retinoid deficiency results from a lack of fetal mouth movement might help elucidate cleft palate etiology and improve early diagnosis in human disorders involving defects of pharyngeal development.


Asunto(s)
Oxidorreductasas de Alcohol/fisiología , Boca/embriología , Hueso Paladar/embriología , Animales , Fisura del Paladar/etiología , Fisura del Paladar/fisiopatología , Modelos Animales de Enfermedad , Ratones , Boca/fisiología , Movimiento , Retinoides/deficiencia
16.
Circ Res ; 125(6): 628-642, 2019 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-31310161

RESUMEN

RATIONALE: Preclinical testing of cardiotoxicity and efficacy of novel heart failure therapies faces a major limitation: the lack of an in situ culture system that emulates the complexity of human heart tissue and maintains viability and functionality for a prolonged time. OBJECTIVE: To develop a reliable, easily reproducible, medium-throughput method to culture pig and human heart slices under physiological conditions for a prolonged period of time. METHODS AND RESULTS: Here, we describe a novel, medium-throughput biomimetic culture system that maintains viability and functionality of human and pig heart slices (300 µm thickness) for 6 days in culture. We optimized the medium and culture conditions with continuous electrical stimulation at 1.2 Hz and oxygenation of the medium. Functional viability of these slices over 6 days was confirmed by assessing their calcium homeostasis, twitch force generation, and response to ß-adrenergic stimulation. Temporal transcriptome analysis using RNAseq at day 2, 6, and 10 in culture confirmed overall maintenance of normal gene expression for up to 6 days, while over 500 transcripts were differentially regulated after 10 days. Electron microscopy demonstrated intact mitochondria and Z-disc ultra-structures after 6 days in culture under our optimized conditions. This biomimetic culture system was successful in keeping human heart slices completely viable and functionally and structurally intact for 6 days in culture. We also used this system to demonstrate the effects of a novel gene therapy approach in human heart slices. Furthermore, this culture system enabled the assessment of contraction and relaxation kinetics on isolated single myofibrils from heart slices after culture. CONCLUSIONS: We have developed and optimized a reliable medium-throughput culture system for pig and human heart slices as a platform for testing the efficacy of novel heart failure therapeutics and reliable testing of cardiotoxicity in a 3-dimensional heart model.


Asunto(s)
Biomimética/métodos , Ventrículos Cardíacos/ultraestructura , Función Ventricular/fisiología , Adulto , Animales , Femenino , Corazón/fisiología , Ventrículos Cardíacos/citología , Humanos , Masculino , Metabolómica/métodos , Persona de Mediana Edad , Miocardio/citología , Miocardio/ultraestructura , Técnicas de Cultivo de Órganos/métodos , Porcinos , Transcriptoma/fisiología
17.
Basic Res Cardiol ; 114(4): 28, 2019 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-31152247

RESUMEN

Several post-translational modifications figure prominently in ventricular remodeling. The beta-O-linkage of N-acetylglucosamine (O-GlcNAc) to proteins has emerged as an important signal in the cardiovascular system. Although there are limited insights about the regulation of the biosynthetic pathway that gives rise to the O-GlcNAc post-translational modification, much remains to be elucidated regarding the enzymes, such as O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), which regulate the presence/absence of O-GlcNAcylation. Recently, we showed that the transcription factor, E2F1, could negatively regulate OGT and OGA expression in vitro. The present study sought to determine whether E2f1 deletion would improve post-infarct ventricular function by de-repressing expression of OGT and OGA. Male and female mice were subjected to non-reperfused myocardial infarction (MI) and followed for 1 or 4 week. MI significantly increased E2F1 expression. Deletion of E2f1 alone was not sufficient to alter OGT or OGA expression in a naïve setting. Cardiac dysfunction was significantly attenuated at 1-week post-MI in E2f1-ablated mice. During chronic heart failure, E2f1 deletion also attenuated cardiac dysfunction. Despite the improvement in function, OGT and OGA expression was not normalized and protein O-GlcNAcyltion was not changed at 1-week post-MI. OGA expression was significantly upregulated at 4-week post-MI but overall protein O-GlcNAcylation was not changed. As an alternative explanation, we also performed guided transcriptional profiling of predicted targets of E2F1, which indicated potential differences in cardiac metabolism, angiogenesis, and apoptosis. E2f1 ablation increased heart size and preserved remote zone capillary density at 1-week post-MI. During chronic heart failure, cardiomyocytes in the remote zone of E2f1-deleted hearts were larger than wildtype. These data indicate that, overall, E2f1 exerts a deleterious effect on ventricular remodeling. Thus, E2f1 deletion improves ventricular remodeling with limited impact on enzymes regulating O-GlcNAcylation.


Asunto(s)
Factor de Transcripción E2F1/deficiencia , Infarto del Miocardio/metabolismo , Miocardio/metabolismo , Función Ventricular Izquierda , Remodelación Ventricular , Animales , Capilares/metabolismo , Capilares/patología , Vasos Coronarios/metabolismo , Vasos Coronarios/patología , Modelos Animales de Enfermedad , Factor de Transcripción E2F1/genética , Femenino , Eliminación de Gen , Glicosilación , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Infarto del Miocardio/genética , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Miocardio/patología , N-Acetilglucosaminiltransferasas/metabolismo , beta-N-Acetilhexosaminidasas/metabolismo
18.
Redox Biol ; 17: 440-449, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29885625

RESUMEN

Pathological cardiac remodeling during heart failure is associated with higher levels of lipid peroxidation products and lower abundance of several aldehyde detoxification enzymes, including aldehyde dehydrogenase 2 (ALDH2). An emerging idea that could explain these findings concerns the role of electrophilic species in redox signaling, which may be important for adaptive responses to stress or injury. The purpose of this study was to determine whether genetically increasing ALDH2 activity affects pressure overload-induced cardiac dysfunction. Mice subjected to transverse aortic constriction (TAC) for 12 weeks developed myocardial hypertrophy and cardiac dysfunction, which were associated with diminished ALDH2 expression and activity. Cardiac-specific expression of the human ALDH2 gene in mice augmented myocardial ALDH2 activity but did not improve cardiac function in response to pressure overload. After 12 weeks of TAC, ALDH2 transgenic mice had larger hearts than their wild-type littermates and lower capillary density. These findings show that overexpression of ALDH2 augments the hypertrophic response to pressure overload and imply that downregulation of ALDH2 may be an adaptive response to certain forms of cardiac pathology.


Asunto(s)
Aldehído Deshidrogenasa Mitocondrial/genética , Insuficiencia Cardíaca/genética , Estrés Oxidativo/genética , Remodelación Ventricular/genética , Animales , Aorta/metabolismo , Regulación de la Expresión Génica , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/patología , Humanos , Ratones , Ratones Transgénicos , Mitocondrias/metabolismo , Miocardio/metabolismo , Miocardio/patología , Oxidación-Reducción , Presión , Transducción de Señal/genética
19.
J Mol Cell Cardiol ; 118: 183-192, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29627295

RESUMEN

Pathological cardiac hypertrophy is associated with the accumulation of lipid peroxidation-derived aldehydes such as 4-hydroxy-trans-2-nonenal (HNE) and acrolein in the heart. These aldehydes are metabolized via several pathways, of which aldose reductase (AR) represents a broad-specificity route for their elimination. We tested the hypothesis that by preventing aldehyde removal, AR deficiency accentuates the pathological effects of transverse aortic constriction (TAC). We found that the levels of AR in the heart were increased in mice subjected to TAC for 2 weeks. In comparison with wild-type (WT), AR-null mice showed lower ejection fraction, which was exacerbated 2 weeks after TAC. Levels of atrial natriuretic peptide and myosin heavy chain were higher in AR-null than in WT TAC hearts. Deficiency of AR decreased urinary levels of the acrolein metabolite, 3-hydroxypropylmercapturic acid. Deletion of AR did not affect the levels of the other aldehyde-metabolizing enzyme - aldehyde dehydrogenase 2 in the heart, or its urinary product - (N-Acetyl-S-(2-carboxyethyl)-l-cystiene). AR-null hearts subjected to TAC showed increased accumulation of HNE- and acrolein-modified proteins, as well as increased AMPK phosphorylation and autophagy. Superfusion with HNE led to a greater increase in p62, LC3II formation, and GFP-LC3-II punctae formation in AR-null than WT cardiac myocytes. Pharmacological inactivation of JNK decreased HNE-induced autophagy in AR-null cardiac myocytes. Collectively, these results suggest that during hypertrophy the accumulation of lipid peroxidation derived aldehydes promotes pathological remodeling via excessive autophagy, and that metabolic detoxification of these aldehydes by AR may be essential for maintaining cardiac function during early stages of pressure overload.


Asunto(s)
Aldehído Reductasa/deficiencia , Autofagia , Corazón/fisiopatología , Presión , Aldehído Reductasa/metabolismo , Aldehídos/metabolismo , Animales , Aorta/patología , Cardiomegalia/diagnóstico por imagen , Cardiomegalia/enzimología , Cardiomegalia/patología , Cardiomegalia/fisiopatología , Constricción Patológica , Eliminación de Gen , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Masculino , Ratones Endogámicos C57BL , Contracción Miocárdica , Miocardio/enzimología , Proteína Sequestosoma-1/metabolismo
20.
Circ Res ; 122(10): 1347-1353, 2018 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-29483092

RESUMEN

RATIONALE: Increasing evidence indicates the presence of lncRNAs in various cell types. Airn is an imprinting gene transcribed from the paternal chromosome. It is in antisense orientation to the imprinted, but maternally derived, Igf2r gene, on which Airn exerts its regulation in cis. Although Airn is highly expressed in the heart, functions aside from imprinting remain unknown. OBJECTIVE: Here, we studied the functions of Airn in the heart, especially cardiomyocytes. METHODS AND RESULTS: Silencing of Airn via siRNAs augmented cell death, vulnerability to cellular stress, and reduced cell migration. To find the cause of such phenotypes, the potential binding partners of Airn were identified via RNA pull-down followed by mass spectrometry, which indicated Igf2bp2 (insulin-like growth factor 2 mRNA-binding protein 2) and Rpa1 (replication protein A1) as potential binding partners. Further experiments showed that Airn binds to Igf2bp2 to control the translation of several genes. Moreover, silencing of Airn caused less binding of Igf2bp2 to other mRNAs and reduced translation of Igf2bp2 protein. CONCLUSIONS: Our study uncovers a new function of Airn and demonstrates that Airn is important for the physiology of cardiomyocytes.


Asunto(s)
Miocitos Cardíacos/metabolismo , ARN Largo no Codificante/genética , Proteínas de Unión al ARN/biosíntesis , Animales , Línea Celular , Movimiento Celular , Regulación de la Expresión Génica , Ratones , Infarto del Miocardio/metabolismo , Especificidad de Órganos , Unión Proteica , Biosíntesis de Proteínas , Interferencia de ARN , Empalme del ARN , ARN Mensajero/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/farmacología , Proteínas de Unión al ARN/genética , Proteína de Replicación A/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...