Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
1.
Nat Commun ; 15(1): 8117, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39284801

RESUMEN

Reproducibility of computational research is often challenging despite established guidelines and best practices. Translating these guidelines into practical applications remains difficult. Here, we present ENCORE, an approach to enhance transparency and reproducibility by guiding researchers in how to structure and document a computational project. ENCORE builds on previous efforts in computational reproducibility and integrates all project components into a standardized file system structure. It utilizes pre-defined files as documentation templates, leverages GitHub for software versioning, and includes an HTML-based navigator. ENCORE is designed to be agnostic to the type of computational project, data, programming language, and ICT infrastructure, and does not rely on specific software tools. We also share our group's experience using ENCORE, highlighting that the most significant challenge to the routine adoption of approaches like ours is the lack of incentives to motivate researchers to dedicate sufficient time and effort to ensure reproducibility.

2.
Commun Med (Lond) ; 4(1): 175, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39256476

RESUMEN

BACKGROUND: X-linked adrenoleukodystrophy (ALD) is a neurometabolic disorder caused by pathogenic variants in ABCD1 resulting very long-chain fatty acids (VLCFA) accumulation in plasma and tissues. Males can present with various clinical manifestations, including adrenal insufficiency, spinal cord disease, and leukodystrophy. Female patients typically develop spinal cord disease and peripheral neuropathy. Predicting the clinical outcome of an individual patient remains impossible due to the lack of genotype-phenotype correlation and predictive biomarkers. METHODS: The availability of a large prospective cohort of well-characterized patients and associated biobank samples allowed us to investigate the relationship between lipidome and disease severity in ALD. We performed a lipidomic analysis of plasma samples from 24 healthy controls, 92 male and 65 female ALD patients. RESULTS: Here we show that VLCFA are incorporated into different lipid classes, including lysophosphatidylcholines, phosphatidylcholines, triglycerides, and sphingomyelins. Our results show a strong association between higher levels of VLCFA-containing lipids and the presence of leukodystrophy, adrenal insufficiency, and severe spinal cord disease in male ALD patients. In female ALD patients, VLCFA-lipid levels correlate with X-inactivation patterns in blood mononuclear cells, and higher levels are associated with more severe disease manifestations. Finally, hematopoietic stem cell transplantation significantly reduces, but does not normalize, plasma C26:0-lysophosphatidylcholine levels in male ALD patients. Our findings are supported by the concordance of C26:0-lysophosphatidylcholine and total VLCFA analysis with the lipidomics results. CONCLUSIONS: This study reveals the profound impact of ALD on the lipidome and provides potential biomarkers for predicting clinical outcomes in ALD patients.


X-linked adrenoleukodystrophy (ALD) affects the brain, spinal cord, and adrenal glands. ALD is caused by too many very long-chain fatty acids (VLCFAs) in the body. We don't know how ALD progresses in individual patients. We have analyzed blood samples from male and female ALD patients. We found that certain changes in fatty acid (or lipid) composition are associated with more severe symptoms. Our findings may lead to new ways to predict which symptoms are likely to change over time and to monitor the effectiveness of treatment. This research increases our understanding of ALD and may improve patient care in the future.

3.
Atherosclerosis ; 397: 118559, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39186910

RESUMEN

BACKGROUND AND AIMS: Anti-neutrophil cytoplasmic antibodies (ANCA)-associated vasculitides (AAV) is associated with an increased cardiovascular risk, particularly the myeloperoxidase AAV serotype (MPO-AAV). Distinct alterations in monocyte phenotypes may cause accelerated atherosclerotic disease in AAV. METHODS: A cohort including 43 AAV patients and 19 healthy controls was included for downstream analyses. Extensive phenotyping of monocytes and monocyte-derived macrophages was performed using bulk RNA-sequencing and flow cytometry. An in vitro transendothelial migration assay reflecting intrinsic adhesive and migratory capacities of monocytes was employed. Subsequent sub-analyses were performed to investigate differences between serological subtypes. RESULTS: Monocyte subset analysis showed increased classical monocytes during active disease, whereas non-classical monocytes were decreased compared to healthy controls (HC). RNA-sequencing revealed upregulation of distinct inflammatory pathways and lipid metabolism-related markers in monocytes of active AAV patients. No differences were detected in the intrinsic monocyte adhesion and migration capacity. Compared to proteinase-3(PR3)-AAV, monocytes of MPO-AAV patients in remission expressed genes related to inflammation, coagulation, platelet-binding and interferon signalling, whereas the expression of chemokine receptors indicative of acute inflammation and monocyte extravasation (i.e., CCR2 and CCR5) was increased in monocytes of PR3-AAV patients. During active disease, PR3-AAV was linked with elevated serum CRP and increased platelet counts compared to MPO-AAV. CONCLUSIONS: These findings highlight changes in monocyte subset composition and activation, but not in the intrinsic migration capacity of AAV monocytes. MPO-AAV monocytes are associated with sustained upregulation of inflammatory genes, whereas PR3-AAV monocytes exhibit chemokine receptor upregulation. These molecular changes may play a role in elevating cardiovascular risk as well as in the underlying pathophysiology of AAV.

4.
Blood Adv ; 8(17): 4633-4646, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39042920

RESUMEN

ABSTRACT: Autologous T-cell-based therapies, such as chimeric antigen receptor (CAR) T-cell therapy, exhibit low success rates in chronic lymphocytic leukemia (CLL) and correlate with a dysfunctional T-cell phenotype observed in patients. Despite various proposed mechanisms of T-cell dysfunction in CLL, the specific CLL-derived factors responsible remain unidentified. This study aimed to investigate the mechanisms through which CLL cells suppress CAR T-cell activation and function. We found that CLL-derived T cells get activated, albeit in a delayed fashion, and specifically that restimulation of CAR T cells in the presence of CLL cells causes impaired cytokine production and reduced proliferation. Notably, coculture of T cells with CD40-activated CLL cells did not lead to T-cell dysfunction, and this required direct cell contact between the CD40-stimulated CLL cells and T cells. Inhibition of kinases involved in the CD40 signaling cascade revealed that the Spare Respiratory Capacity (SRC) kinase inhibitor dasatinib prevented rescue of T-cell function independent of CD40-mediated increased levels of costimulatory and adhesion ligands on CLL cells. Transcriptome profiling of CD40-stimulated CLL cells with or without dasatinib identified widespread differential gene expression. Selecting for surface receptor genes revealed CD40-mediated downregulation of the Sialic acid-binding Ig-like lectin 10 (Siglec-10) ligands CD24 and CD52, which was prevented by dasatinib, suggesting a role for these ligands in functional T-cell suppression in CLL. Indeed, blocking CD24 and/or CD52 markedly reduced CAR T-cell dysfunction upon coculture with resting CLL cells. These results demonstrated that T cells derived from CLL patients can be reinvigorated by manipulating CLL-T-cell interactions. Targeting CD24- and CD52-mediated CLL-T-cell interaction could be a promising therapeutic strategy to enhance T-cell function in CLL.


Asunto(s)
Antígeno CD24 , Antígeno CD52 , Leucemia Linfocítica Crónica de Células B , Linfocitos T , Humanos , Leucemia Linfocítica Crónica de Células B/metabolismo , Leucemia Linfocítica Crónica de Células B/inmunología , Leucemia Linfocítica Crónica de Células B/terapia , Antígeno CD52/metabolismo , Linfocitos T/metabolismo , Linfocitos T/inmunología , Antígeno CD24/metabolismo , Activación de Linfocitos/inmunología , Ligandos , Receptores Quiméricos de Antígenos/metabolismo
5.
Gene ; 927: 148707, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38885822

RESUMEN

Transducin ß-like 1 X-linked receptor 1 (mouse Tbl1xr1) or TBL1X/Y related 1 (human TBL1XR1), part of the NCoR/SMRT corepressor complex, is involved in nuclear receptor signaling. Variants in TBL1XR1 cause a variety of neurodevelopmental disorders including Pierpont syndrome caused by the p.Tyr446Cys variant. We recently reported a mouse model carrying the Tbl1xr1Y446C/Y446C variant as a model for Pierpont syndrome. To obtain insight into mechanisms involved in altered brain development we studied gene expression patterns in the cortex of mutant and wild type (WT) mice, using RNA-sequencing, differentially expressed gene (DEG) analysis, gene set enrichment analysis (GSEA), weighted gene correlation network analysis (WGCNA) and hub gene analysis. We validated results in mutated mouse cortex, as well as in BV2 and SK-N-AS cell lines, in both of which Tbl1xr1 was knocked down by siRNA. Two DEGs (adj.P. Val < 0.05) were found in the cortex, Mpeg1 (downregulated in mutant mice) and 2900052N01Rik (upregulated in mutant mice). GSEA, WGCNA and hub gene analysis demonstrated changes in genes involved in ion channel function and neuroinflammation in the cortex of the Tbl1xr1Y446C/Y446C mice. The lowered expression of ion channel genes Kcnh3 and Kcnj4 mRNA was validated in the mutant mouse cortex, and increased expression of TRIM9, associated with neuroinflammation, was confirmed in the SK-N-AS cell line. Conclusively, our results show altered expression of genes involved in ion channel function and neuroinflammation in the cortex of the Tbl1xr1Y446C/Y446C mice. These may partly explain the impaired neurodevelopment observed in individuals with Pierpont syndrome and related TBL1XR1-related disorders.


Asunto(s)
Corteza Cerebral , Receptores Citoplasmáticos y Nucleares , Proteínas Represoras , Animales , Humanos , Masculino , Ratones , Línea Celular , Corteza Cerebral/metabolismo , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo
6.
Nat Aging ; 4(5): 681-693, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38609524

RESUMEN

Studies in preclinical models suggest that complex lipids, such as phospholipids, play a role in the regulation of longevity. However, identification of universally conserved complex lipid changes that occur during aging, and how these respond to interventions, is lacking. Here, to comprehensively map how complex lipids change during aging, we profiled ten tissues in young versus aged mice using a lipidomics platform. Strikingly, from >1,200 unique lipids, we found a tissue-wide accumulation of bis(monoacylglycero)phosphate (BMP) during mouse aging. To investigate translational value, we assessed muscle tissue of young and older people, and found a similar marked BMP accumulation in the human aging lipidome. Furthermore, we found that a healthy-aging intervention consisting of moderate-to-vigorous exercise was able to lower BMP levels in postmenopausal female research participants. Our work implicates complex lipid biology as central to aging, identifying a conserved aging lipid signature of BMP accumulation that is modifiable upon a short-term healthy-aging intervention.


Asunto(s)
Envejecimiento , Ejercicio Físico , Músculo Esquelético , Humanos , Animales , Envejecimiento/metabolismo , Femenino , Ratones , Músculo Esquelético/metabolismo , Ejercicio Físico/fisiología , Masculino , Lipidómica , Lisofosfolípidos/metabolismo , Condicionamiento Físico Animal/fisiología , Anciano , Metabolismo de los Lípidos/fisiología , Monoglicéridos/metabolismo , Adulto , Persona de Mediana Edad
7.
Acta Neuropathol Commun ; 12(1): 68, 2024 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664739

RESUMEN

Some individuals show a discrepancy between cognition and the amount of neuropathological changes characteristic for Alzheimer's disease (AD). This phenomenon has been referred to as 'resilience'. The molecular and cellular underpinnings of resilience remain poorly understood. To obtain an unbiased understanding of the molecular changes underlying resilience, we investigated global changes in gene expression in the superior frontal gyrus of a cohort of cognitively and pathologically well-defined AD patients, resilient individuals and age-matched controls (n = 11-12 per group). 897 genes were significantly altered between AD and control, 1121 between resilient and control and 6 between resilient and AD. Gene set enrichment analysis (GSEA) revealed that the expression of metallothionein (MT) and of genes related to mitochondrial processes was higher in the resilient donors. Weighted gene co-expression network analysis (WGCNA) identified gene modules related to the unfolded protein response, mitochondrial processes and synaptic signaling to be differentially associated with resilience or dementia. As changes in MT, mitochondria, heat shock proteins and the unfolded protein response (UPR) were the most pronounced changes in the GSEA and/or WGCNA, immunohistochemistry was used to further validate these processes. MT was significantly increased in astrocytes in resilient individuals. A higher proportion of the mitochondrial gene MT-CO1 was detected outside the cell body versus inside the cell body in the resilient compared to the control group and there were higher levels of heat shock protein 70 (HSP70) and X-box-binding protein 1 spliced (XBP1s), two proteins related to heat shock proteins and the UPR, in the AD donors. Finally, we show evidence for putative sex-specific alterations in resilience, including gene expression differences related to autophagy in females compared to males. Taken together, these results show possible mechanisms involving MTs, mitochondrial processes and the UPR by which individuals might maintain cognition despite the presence of AD pathology.


Asunto(s)
Enfermedad de Alzheimer , Perfilación de la Expresión Génica , Metalotioneína , Mitocondrias , Respuesta de Proteína Desplegada , Humanos , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Metalotioneína/genética , Metalotioneína/metabolismo , Femenino , Masculino , Anciano , Respuesta de Proteína Desplegada/genética , Respuesta de Proteína Desplegada/fisiología , Mitocondrias/metabolismo , Mitocondrias/genética , Mitocondrias/patología , Anciano de 80 o más Años , Resiliencia Psicológica
8.
JHEP Rep ; 6(4): 101015, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38524667

RESUMEN

Background & Aims: IgG4-related cholangitis (IRC) is the hepatobiliary manifestation of IgG4-related disease. Anti-laminin 511-E8 autoantibodies have been identified in its pancreatic manifestation. Laminin 511-E8 promotes endothelial barrier function, lymphocyte recruitment, and cholangiocyte differentiation. Here, we investigate anti-laminin 511-E8 autoantibody presence in IRC, and mechanisms via which laminin 511 may contribute to cholangiocyte protection. Methods: Anti-laminin 511-E8 serum autoantibody positivity was assessed by ELISA. RNA sequencing and RT-qPCR were performed on human H69 cholangiocytes treated with recombinant laminin 511-E8. H69 cholangiocytes were subjected to shRNA knockdown targeting genes encoding laminin 511 (LAMA5, LAMB1, LAMC1) or treated with recombinant laminin 511-E8. Cholangiocellular bile acid influx was quantified radiochemically using 22,23-3H-glycochenodeoxycholic acid (GCDC). GCDC-induced apoptosis was determined by Caspase-3/7 assays. Cholangiocellular barrier function was assessed by FITC-Dextran permeability assays. Immunofluorescent staining of laminin 511 and claudin 1 was performed on extrahepatic bile duct tissue of control and anti-laminin 511-E8 positive individuals with IRC. Results: Seven out of 52 individuals with IRC had autoantibodies against laminin 511-E8. Recombinant laminin 511-E8 led to differential expression of genes involved in secretion, barrier function, and inflammation. Knockdown of laminin 511 constituents increased toxic bile acid permeation and GCDC-induced apoptosis. Laminin 511-E8 treatment decreased toxic bile acid permeation and dose-dependently alleviated GCDC-induced apoptosis. LAMA5 and LAMC1 knockdown increased transepithelial permeability. Laminin 511-E8 treatment reduced transepithelial permeability and prevented T lymphocyte-induced barrier dysfunction. Laminin 511 and claudin 1 staining patterns appeared altered in anti-laminin 511-E8 positive individuals with IRC. Conclusions: Laminin 511-E8 is an autoantigen in subsets of individuals with IRC. Laminin 511 enhances cholangiocellular barrier function and protects cholangiocytes against T lymphocyte-induced barrier dysfunction, toxic bile acid permeation and bile acid-induced apoptosis. Impact and implications: A subset of patients with IgG4-related cholangitis (IRC) has autoantibodies against laminin 511-E8. In human cholangiocytes, laminin 511 protects against (T lymphocyte-induced) epithelial barrier dysfunction and hydrophobic bile acids. Laminin 511 and claudin 1 staining may be altered in extrahepatic bile ducts of patients with IRC who are anti-laminin 511-E8 positive. This makes it tempting to speculate that a decreased epithelial barrier function with attraction of immune cells and impaired bicarbonate secretion as a result of dysfunction of laminin 511 by autoantibody binding could potentially be a common systemic pathogenic mechanism in a subset of patients with IgG4-RD.

9.
Nat Commun ; 15(1): 1667, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38396116

RESUMEN

Microglia nodules (HLA-DR+ cell clusters) are associated with brain pathology. In this post-mortem study, we investigated whether they represent the first stage of multiple sclerosis (MS) lesion formation. We show that microglia nodules are associated with more severe MS pathology. Compared to microglia nodules in stroke, those in MS show enhanced expression of genes previously found upregulated in MS lesions. Furthermore, genes associated with lipid metabolism, presence of T and B cells, production of immunoglobulins and cytokines, activation of the complement cascade, and metabolic stress are upregulated in microglia nodules in MS. Compared to stroke, they more frequently phagocytose oxidized phospholipids and possess a more tubular mitochondrial network. Strikingly, in MS, some microglia nodules encapsulate partially demyelinated axons. Taken together, we propose that activation of microglia nodules in MS by cytokines and immunoglobulins, together with phagocytosis of oxidized phospholipids, may lead to a microglia phenotype prone to MS lesion formation.


Asunto(s)
Esclerosis Múltiple , Enfermedades del Sistema Nervioso , Accidente Cerebrovascular , Humanos , Esclerosis Múltiple/patología , Microglía/metabolismo , Enfermedades del Sistema Nervioso/patología , Accidente Cerebrovascular/patología , Citocinas/metabolismo , Inmunoglobulinas/metabolismo
10.
iScience ; 27(1): 108681, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38269100

RESUMEN

Aging increases the risk of age-related diseases, imposing substantial healthcare and personal costs. Targeting fundamental aging mechanisms pharmacologically can promote healthy aging and reduce this disease susceptibility. In this work, we employed transcriptome-based drug screening to identify compounds emulating transcriptional signatures of long-lived genetic interventions. We discovered compound 60 (Cmpd60), a selective histone deacetylase 1 and 2 (HDAC1/2) inhibitor, mimicking diverse longevity interventions. In extensive molecular, phenotypic, and bioinformatic assessments using various cell and aged mouse models, we found Cmpd60 treatment to improve age-related phenotypes in multiple organs. Cmpd60 reduces renal epithelial-mesenchymal transition and fibrosis in kidney, diminishes dementia-related gene expression in brain, and enhances cardiac contractility and relaxation for the heart. In sum, our two-week HDAC1/2 inhibitor treatment in aged mice establishes a multi-tissue, healthy aging intervention in mammals, holding promise for therapeutic translation to promote healthy aging in humans.

11.
J Autoimmun ; 142: 103133, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37931331

RESUMEN

B lineage cells are critically involved in ANCA-associated vasculitis (AAV), evidenced by alterations in circulating B cell subsets and beneficial clinical effects of rituximab (anti-CD20) therapy. This treatment renders a long-term, peripheral B cell depletion, but allows for the survival of long-lived plasma cells. Therefore, there is an unmet need for more reversible and full B lineage cell targeting approaches. To find potential novel therapeutic targets, RNA sequencing of CD27+ memory B cells of patients with active AAV was performed, revealing an upregulated NF-κB-associated gene signature. NF-κB signaling pathways act downstream of various B cell surface receptors, including the BCR, CD40, BAFFR and TLRs, and are essential for B cell responses. Here we demonstrate that novel pharmacological inhibitors of NF-κB inducing kinase (NIK, non-canonical NF-κB signaling) and inhibitor-of-κB-kinase-ß (IKKß, canonical NF-κB signaling) can effectively inhibit NF-κB signaling in B cells, whereas T cell responses were largely unaffected. Moreover, both inhibitors significantly reduced B cell proliferation, differentiation and production of antibodies, including proteinase-3 (PR3) autoantibodies, in B lineage cells of AAV patients. These findings indicate that targeting NF-κB, particularly NIK, may be an effective, novel B lineage cell targeted therapy for AAV and other autoimmune diseases with prominent B cell involvement.


Asunto(s)
Vasculitis Asociada a Anticuerpos Citoplasmáticos Antineutrófilos , FN-kappa B , Humanos , FN-kappa B/metabolismo , Transducción de Señal , Linfocitos B/metabolismo , Quinasa de Factor Nuclear kappa B , Vasculitis Asociada a Anticuerpos Citoplasmáticos Antineutrófilos/tratamiento farmacológico , Vasculitis Asociada a Anticuerpos Citoplasmáticos Antineutrófilos/metabolismo
12.
Cell Tissue Res ; 394(3): 497-514, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37833432

RESUMEN

We aim to elucidate how miRNAs regulate the mRNA signature of atrial fibrillation (AF), to gain mechanistic insight and identify candidate targets for future therapies. We present combined miRNA-mRNA sequencing using atrial tissues of patient without AF (n = 22), with paroxysmal AF (n = 22) and with persistent AF (n = 20). mRNA sequencing previously uncovered upregulated epithelial to mesenchymal transition, endothelial cell proliferation and extracellular matrix remodelling involving glycoproteins and proteoglycans in AF. MiRNA co-sequencing discovered miRNAs regulating the mRNA expression changes. Key downregulated miRNAs included miR-135b-5p, miR-138-5p, miR-200a-3p, miR-200b-3p and miR-31-5p and key upregulated miRNAs were miR-144-3p, miR-15b-3p, miR-182-5p miR-18b-5p, miR-4306 and miR-206. MiRNA expression levels were negatively correlated with the expression levels of a multitude of predicted target genes. Downregulated miRNAs associated with increased gene expression are involved in upregulated epithelial and endothelial cell migration and glycosaminoglycan biosynthesis. In vitro inhibition of miR-135b-5p and miR-138-5p validated an effect of miRNAs on multiple predicted targets. Altogether, the discovered miRNAs may be explored in further functional studies as potential targets for anti-fibrotic therapies in AF.


Asunto(s)
Fibrilación Atrial , MicroARNs , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Fibrilación Atrial/genética , Transición Epitelial-Mesenquimal/genética , Atrios Cardíacos/metabolismo , ARN Mensajero
13.
Nat Commun ; 14(1): 5181, 2023 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-37626055

RESUMEN

The sterol regulatory element binding proteins (SREBPs) are transcription factors that govern cholesterol and fatty acid metabolism. We recently identified SPRING as a post-transcriptional regulator of SREBP activation. Constitutive or inducible global ablation of Spring in mice is not tolerated, and we therefore develop liver-specific Spring knockout mice (LKO). Transcriptomics and proteomics analysis reveal attenuated SREBP signaling in livers and hepatocytes of LKO mice. Total plasma cholesterol is reduced in male and female LKO mice in both the low-density lipoprotein and high-density lipoprotein fractions, while triglycerides are unaffected. Loss of Spring decreases hepatic cholesterol and triglyceride content due to diminished biosynthesis, which coincides with reduced very-low-density lipoprotein secretion. Accordingly, LKO mice are protected from fructose diet-induced hepatosteatosis. In humans, we find common genetic SPRING variants that associate with circulating high-density lipoprotein cholesterol and ApoA1 levels. This study positions SPRING as a core component of hepatic SREBP signaling and systemic lipid metabolism in mice and humans.


Asunto(s)
Metabolismo de los Lípidos , Hígado , Humanos , Femenino , Masculino , Animales , Ratones , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Metabolismo de los Lípidos/genética , Hepatocitos , Lipoproteínas HDL
14.
Stem Cell Reports ; 18(9): 1793-1810, 2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37541258

RESUMEN

CRB1 gene mutations can cause early- or late-onset retinitis pigmentosa, Leber congenital amaurosis, or maculopathy. Recapitulating human CRB1 phenotypes in animal models has proven challenging, necessitating the development of alternatives. We generated human induced pluripotent stem cell (iPSC)-derived retinal organoids of patients with retinitis pigmentosa caused by biallelic CRB1 mutations and evaluated them against autologous gene-corrected hiPSCs and hiPSCs from healthy individuals. Patient organoids show decreased levels of CRB1 and NOTCH1 expression at the retinal outer limiting membrane. Proximity ligation assays show that human CRB1 and NOTCH1 can interact via their extracellular domains. CRB1 patient organoids feature increased levels of WDFY1+ vesicles, fewer RAB11A+ recycling endosomes, decreased VPS35 retromer complex components, and more degradative endolysosomal compartments relative to isogenic control organoids. Taken together, our data demonstrate that patient-derived retinal organoids enable modeling of retinal degeneration and highlight the importance of CRB1 in early endosome maturation receptor recycling in the retina.


Asunto(s)
Células Madre Pluripotentes Inducidas , Degeneración Retiniana , Retinitis Pigmentosa , Animales , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Retina/metabolismo , Degeneración Retiniana/genética , Retinitis Pigmentosa/genética , Mutación , Organoides/metabolismo , Proteínas del Ojo/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo
15.
NPJ Syst Biol Appl ; 9(1): 8, 2023 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-36927990

RESUMEN

Sequencing of B-cell and T-cell immune receptor repertoires helps us to understand the adaptive immune response, although it only provides information about the clonotypes (lineages) and their frequencies and not about, for example, their affinity or antigen (Ag) specificity. To further characterize the identified clones, usually with special attention to the particularly abundant ones (dominant), additional time-consuming or expensive experiments are generally required. Here, we present an extension of a multiscale model of the germinal center (GC) that we previously developed to gain more insight in B-cell repertoires. We compare the extent that these simulated repertoires deviate from experimental repertoires established from single GCs, blood, or tissue. Our simulations show that there is a limited correlation between clonal abundance and affinity and that there is large affinity variability among same-ancestor (same-clone) subclones. Our simulations suggest that low-abundance clones and subclones, might also be of interest since they may have high affinity for the Ag. We show that the fraction of plasma cells (PCs) with high B-cell receptor (BcR) mRNA content in the GC does not significantly affect the number of dominant clones derived from single GCs by sequencing BcR mRNAs. Results from these simulations guide data interpretation and the design of follow-up experiments.


Asunto(s)
Linfocitos B , Centro Germinal , Receptores de Antígenos de Linfocitos B/genética
16.
J Lipid Res ; 64(2): 100325, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36592658

RESUMEN

Lysoplasmalogens are a class of vinyl ether bioactive lipids that have a central role in plasmalogen metabolism and membrane fluidity. The liver X receptor (LXR) transcription factors are important determinants of cellular lipid homeostasis owing to their ability to regulate cholesterol and fatty acid metabolism. However, their role in governing the composition of lipid species such as lysoplasmalogens in cellular membranes is less well studied. Here, we mapped the lipidome of bone marrow-derived macrophages (BMDMs) following LXR activation. We found a marked reduction in the levels of lysoplasmalogen species in the absence of changes in the levels of plasmalogens themselves. Transcriptional profiling of LXR-activated macrophages identified the gene encoding transmembrane protein 86a (TMEM86a), an integral endoplasmic reticulum protein, as a previously uncharacterized sterol-regulated gene. We demonstrate that TMEM86a is a direct transcriptional target of LXR in macrophages and microglia and that it is highly expressed in TREM2+/lipid-associated macrophages in human atherosclerotic plaques, where its expression positively correlates with other LXR-regulated genes. We further show that both murine and human TMEM86a display active lysoplasmalogenase activity that can be abrogated by inactivating mutations in the predicted catalytic site. Consequently, we demonstrate that overexpression of Tmem86a in BMDM markedly reduces lysoplasmalogen abundance and membrane fluidity, while reciprocally, silencing of Tmem86a increases basal lysoplasmalogen levels and abrogates the LXR-dependent reduction of this lipid species. Collectively, our findings implicate TMEM86a as a sterol-regulated lysoplasmalogenase in macrophages that contributes to sterol-dependent membrane remodeling.


Asunto(s)
Macrófagos , Esteroles , Animales , Humanos , Ratones , Receptores X del Hígado/metabolismo , Macrófagos/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de la Membrana/metabolismo , Receptores Inmunológicos , Esteroles/metabolismo , Factores de Transcripción/metabolismo
17.
Cell Rep ; 42(1): 111928, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36640360

RESUMEN

The human population is aging, and the need for interventions to slow progression of age-related diseases (geroprotective interventions) is growing. Repurposing compounds already used clinically, usually at modified doses, allows rapid implementation of geroprotective pharmaceuticals. Here we find the anti-retroviral nucleoside reverse transcriptase inhibitor (NRTI) zidovudine robustly extends lifespan and health span in C. elegans, independent of electron transport chain impairment or ROS accumulation. Rather, zidovudine treatment modifies pyrimidine metabolism and transcripts related to proteostasis. Testing regulators of mitochondrial stress and proteostasis shows that lifespan extension is dependent on activating transcription factor 4 (ATF-4). ATF-4 regulates longevity induced by mitochondrial stress, specifically communication between mitochondrial and cytosolic translation. Translation is reduced in zidovudine-treated worms, also dependent on ATF-4. Finally, we show ATF-4-dependent lifespan extension induced by didanosine, another NRTI. Altogether, our work elucidates the geroprotective effects of NRTIs such as zidovudine in vivo, via reduction of translation and ATF-4.


Asunto(s)
Infecciones por VIH , Zidovudina , Animales , Humanos , Zidovudina/farmacología , Zidovudina/uso terapéutico , Longevidad , Factor de Transcripción Activador 4 , Caenorhabditis elegans/fisiología , Inhibidores de la Transcriptasa Inversa/farmacología , Inhibidores de la Transcriptasa Inversa/uso terapéutico , Retroviridae , Infecciones por VIH/tratamiento farmacológico
18.
Cell Signal ; 104: 110587, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36610523

RESUMEN

The LIM-domain-only protein FHL2 is a modulator of signal transduction and has been shown to direct the differentiation of mesenchymal stem cells towards osteoblast and myocyte phenotypes. We hypothesized that FHL2 may simultaneously interfere with the induction of the adipocyte lineage. Therefore, we investigated the role of FHL2 in adipocyte differentiation. For these studies pre-adipocytes isolated from mouse adipose tissue and the 3T3-L1 (pre)adipocyte cell line were applied. We performed FHL2 gain of function and knockdown experiments followed by extensive RNAseq analyses and phenotypic characterization of the cells by oil-red O (ORO) lipid staining. Through affinity-purification mass spectrometry (AP-MS) novel FHL2 interacting proteins were identified. Here we report that FHL2 is expressed in pre-adipocytes and for accurate adipocyte differentiation, this protein needs to be downregulated during the early stages of adipogenesis. More specifically, constitutive overexpression of FHL2 drastically inhibits adipocyte differentiation in 3T3-L1 cells, which was demonstrated by suppressed activation of the adipogenic gene expression program as shown by RNAseq analyses, and diminished lipid accumulation. Analysis of the protein-protein interactions mediating this repressive activity of FHL2 on adipogenesis revealed the interaction of FHL2 with the Nuclear factor of activated T-cells 5 (NFAT5). NFAT5 is an established inhibitor of adipocyte differentiation and its knockdown rescued the inhibitory effect of FHL2 overexpression on 3T3-L1 differentiation, indicating that these proteins act cooperatively. We present a new regulatory function of FHL2 in early adipocyte differentiation and revealed that FHL2-mediated inhibition of pre-adipocyte differentiation is dependent on its interaction with NFAT5. FHL2 expression increases with aging, which may affect mesenchymal stem cell differentiation, more specifically inhibit adipocyte differentiation.


Asunto(s)
Adipocitos , Adipogénesis , Ratones , Animales , Adipogénesis/genética , Diferenciación Celular , Adipocitos/metabolismo , Transducción de Señal , Lípidos , Células 3T3-L1 , Factores de Transcripción/metabolismo , Proteínas Musculares/metabolismo , Proteínas con Homeodominio LIM/genética , Proteínas con Homeodominio LIM/metabolismo , Proteínas con Homeodominio LIM/farmacología
19.
iScience ; 26(1): 105785, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36594029

RESUMEN

The human brain is populated by perivascular T cells with a tissue-resident memory T (TRM)-cell phenotype, which in multiple sclerosis (MS) associate with lesions. We investigated the transcriptional and functional profile of freshly isolated T cells from white and gray matter. RNA sequencing of CD8+ and CD4+ CD69+ T cells revealed TRM-cell signatures. Notably, gene expression hardly differed between lesional and normal-appearing white matter T cells in MS brains. Genes up-regulated in brain TRM cells were MS4A1 (CD20) and SPP1 (osteopontin, OPN). OPN is also abundantly expressed by microglia and has been shown to inhibit T cell activity. In line with their parenchymal localization and the increased presence of OPN in active MS lesions, we noticed a reduced production of inflammatory cytokines IL-2, TNF, and IFNγ by lesion-derived CD8+ and CD4+ T cells ex vivo. Our study reports traits of brain TRM cells and reveals their tight control in MS lesions.

20.
Leukemia ; 37(3): 606-616, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36658390

RESUMEN

T-cell dysregulation in chronic lymphocytic leukemia (CLL) associates with low response rates to autologous T cell-based therapies. How CLL affects antigen-specific T-cell responses remains largely unknown. We investigated (epi)genetic and functional consequences of antigen-specific T-cell responses in presence of CLL in vitro and in an adoptive-transfer murine model. Already at steady-state, antigen-experienced patient-derived T cells were skewed towards short-lived effector cells (SLEC) at the expense of memory-precursor effector cells (MPEC). Stimulation of these T cells in vitro showed rapid induction of effector genes and suppression of key memory transcription factors only in presence of CLL cells, indicating epigenetic regulation. This was investigated in vivo by following antigen-specific responses of naïve OT-I CD8+ cells to mCMV-OVA in presence/absence of TCL1 B-cell leukemia. Presence of leukemia resulted in increased SLEC formation, with disturbed inflammatory cytokine production. Chromatin and transcriptome profiling revealed strong epigenetic modifications, leading to activation of an effector and silencing of a memory profile through presence of CLL cells. Secondary challenge in vivo confirmed dysfunctional memory responses by antigen-experienced OT-I cells generated in presence of CLL. Altogether, we show that presence of CLL induces a short-lived effector phenotype and impaired memory responses by epigenetic reprogramming during primary responses.


Asunto(s)
Leucemia Linfocítica Crónica de Células B , Ratones , Animales , Leucemia Linfocítica Crónica de Células B/genética , Leucemia Linfocítica Crónica de Células B/terapia , Epigénesis Genética , Linfocitos T CD8-positivos , Antígenos , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...