Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 295(46): 15576-15587, 2020 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-32883811

RESUMEN

Ribonucleotide reductase (RNR) is a central enzyme for the synthesis of DNA building blocks. Most aerobic organisms, including nearly all eukaryotes, have class I RNRs consisting of R1 and R2 subunits. The catalytic R1 subunit contains an overall activity site that can allosterically turn the enzyme on or off by the binding of ATP or dATP, respectively. The mechanism behind the ability to turn the enzyme off via the R1 subunit involves the formation of different types of R1 oligomers in most studied species and R1-R2 octamers in Escherichia coli To better understand the distribution of different oligomerization mechanisms, we characterized the enzyme from Clostridium botulinum, which belongs to a subclass of class I RNRs not studied before. The recombinantly expressed enzyme was analyzed by size-exclusion chromatography, gas-phase electrophoretic mobility macromolecular analysis, EM, X-ray crystallography, and enzyme assays. Interestingly, it shares the ability of the E. coli RNR to form inhibited R1-R2 octamers in the presence of dATP but, unlike the E. coli enzyme, cannot be turned off by combinations of ATP and dGTP/dTTP. A phylogenetic analysis of class I RNRs suggests that activity regulation is not ancestral but was gained after the first subclasses diverged and that RNR subclasses with inhibition mechanisms involving R1 oligomerization belong to a clade separated from the two subclasses forming R1-R2 octamers. These results give further insight into activity regulation in class I RNRs as an evolutionarily dynamic process.


Asunto(s)
Proteínas Bacterianas/metabolismo , Clostridium botulinum/enzimología , Ribonucleótido Reductasas/metabolismo , Proteínas Bacterianas/clasificación , Dominio Catalítico , Cristalografía por Rayos X , Nucleótidos de Desoxiadenina/química , Dimerización , Escherichia coli/metabolismo , Filogenia , Estructura Cuaternaria de Proteína , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Ribonucleótido Reductasas/clasificación
2.
J Mol Biol ; 430(18 Pt B): 3157-3169, 2018 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-30021116

RESUMEN

Bacterial virulence is typically initiated by translocation of effector or toxic proteins across host cell membranes. A class of gram-negative pathogenic bacteria including Yersinia pseudotuberculosis and Yersinia pestis accomplishes this objective with a protein assembly called the type III secretion system. Yersinia effector proteins (Yop) are presented to the translocation apparatus through formation of specific complexes with their cognate chaperones (Syc). In the complexes where the structure is available, the Yops are extended and wrap around their cognate chaperone. This structural architecture enables secretion of the Yop from the bacterium in early stages of translocation. It has been shown previously that the chaperone-binding domain of YopE is disordered in its isolation but becomes substantially more ordered in its wrap-around complex with its chaperone SycE. Here, by means of NMR spectroscopy, small-angle X-ray scattering and molecular modeling, we demonstrate that while the free chaperone-binding domain of YopH (YopHCBD) adopts a fully ordered and globular fold, it populates an elongated, wrap-around conformation when it engages in a specific complex with its chaperone SycH2. Hence, in contrast to YopE that is unstructured in its free state, YopH transits from a globular free state to an elongated chaperone-bound state. We demonstrate that a sparsely populated YopHCBD state has an elevated affinity for SycH2 and represents an intermediate in the formation of the protein complex. Our results suggest that Yersinia has evolved a binding mechanism where SycH2 passively stimulates an elongated YopH conformation that is presented to the type III secretion system in a secretion-competent conformation.


Asunto(s)
Proteínas Bacterianas/química , Sistemas de Secreción Bacterianos , Complejos Multiproteicos/química , Proteínas Bacterianas/metabolismo , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Complejos Multiproteicos/metabolismo , Unión Proteica , Conformación Proteica , Pliegue de Proteína , Relación Estructura-Actividad , Yersinia pseudotuberculosis/metabolismo
3.
Mol Microbiol ; 109(3): 291-305, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29723434

RESUMEN

Gram-positive bacteria deploy type IV secretion systems (T4SSs) to facilitate horizontal gene transfer. The T4SSs of Gram-positive bacteria rely on surface adhesins as opposed to conjugative pili to facilitate mating. Enterococcus faecalis PrgB is a surface adhesin that promotes mating pair formation and robust biofilm development in an extracellular DNA (eDNA) dependent manner. Here, we report the structure of the adhesin domain of PrgB. The adhesin domain binds and compacts DNA in vitro. In vivo PrgB deleted of its adhesin domain does not support cellular aggregation, biofilm development and conjugative DNA transfer. PrgB also binds lipoteichoic acid (LTA), which competes with DNA binding. We propose that PrgB binding and compaction of eDNA facilitates cell aggregation and plays an important role in establishment of early biofilms in mono- or polyspecies settings. Within these biofilms, PrgB mediates formation and stabilization of direct cell-cell contacts through alternative binding of cell-bound LTA, which in turn promotes establishment of productive mating junctions and efficient intra- or inter-species T4SS-mediated gene transfer.


Asunto(s)
Uniones Adherentes/fisiología , Adhesinas Bacterianas/química , Adhesinas Bacterianas/metabolismo , Biopelículas/crecimiento & desarrollo , Conjugación Genética , Enterococcus faecalis/fisiología , Adhesinas Bacterianas/genética , Línea Celular , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Enterococcus faecalis/genética , Transferencia de Gen Horizontal , Lipopolisacáridos/química , Lipopolisacáridos/metabolismo , Plásmidos/química , Plásmidos/genética , Plásmidos/metabolismo , Unión Proteica , Conformación Proteica , Ácidos Teicoicos/química , Ácidos Teicoicos/metabolismo , Sistemas de Secreción Tipo IV
4.
Elife ; 72018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29388911

RESUMEN

Ribonucleotide reductases (RNRs) are key enzymes in DNA metabolism, with allosteric mechanisms controlling substrate specificity and overall activity. In RNRs, the activity master-switch, the ATP-cone, has been found exclusively in the catalytic subunit. In two class I RNR subclasses whose catalytic subunit lacks the ATP-cone, we discovered ATP-cones in the radical-generating subunit. The ATP-cone in the Leeuwenhoekiella blandensis radical-generating subunit regulates activity via quaternary structure induced by binding of nucleotides. ATP induces enzymatically competent dimers, whereas dATP induces non-productive tetramers, resulting in different holoenzymes. The tetramer forms by interactions between ATP-cones, shown by a 2.45 Å crystal structure. We also present evidence for an MnIIIMnIV metal center. In summary, lack of an ATP-cone domain in the catalytic subunit was compensated by transfer of the domain to the radical-generating subunit. To our knowledge, this represents the first observation of transfer of an allosteric domain between components of the same enzyme complex.


Asunto(s)
Adenosina Trifosfato/metabolismo , Flavobacteriaceae/enzimología , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Ribonucleótido Reductasas/química , Ribonucleótido Reductasas/metabolismo , Regulación Alostérica , Cristalografía por Rayos X , Conformación Proteica , Multimerización de Proteína
5.
J Biol Chem ; 292(46): 19044-19054, 2017 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-28972190

RESUMEN

Ribonucleotide reductases (RNRs) catalyze the reduction of ribonucleotides to the corresponding deoxyribonucleotides, used in DNA synthesis and repair. Two different mechanisms help deliver the required electrons to the RNR active site. Formate can be used as reductant directly in the active site, or glutaredoxins or thioredoxins reduce a C-terminal cysteine pair, which then delivers the electrons to the active site. Here, we characterized a novel cysteine-rich C-terminal domain (CRD), which is present in most class II RNRs found in microbes. The NrdJd-type RNR from the bacterium Stackebrandtia nassauensis was used as a model enzyme. We show that the CRD is involved in both higher oligomeric state formation and electron transfer to the active site. The CRD-dependent formation of high oligomers, such as tetramers and hexamers, was induced by addition of dATP or dGTP, but not of dTTP or dCTP. The electron transfer was mediated by an array of six cysteine residues at the very C-terminal end, which also coordinated a zinc atom. The electron transfer can also occur between subunits, depending on the enzyme's oligomeric state. An investigation of the native reductant of the system revealed no interaction with glutaredoxins or thioredoxins, indicating that this class II RNR uses a different electron source. Our results indicate that the CRD has a crucial role in catalytic turnover and a potentially new terminal reduction mechanism and suggest that the CRD is important for the activities of many class II RNRs.


Asunto(s)
Actinomycetales/química , Proteínas Bacterianas/química , Cisteína/química , Ribonucleótido Reductasas/química , Dedos de Zinc , Actinomycetales/genética , Actinomycetales/metabolismo , Regulación Alostérica , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Dominio Catalítico , Cristalografía por Rayos X , Cisteína/genética , Cisteína/metabolismo , Transporte de Electrón , Modelos Moleculares , Oxidación-Reducción , Filogenia , Dominios Proteicos , Multimerización de Proteína , Ribonucleótido Reductasas/genética , Ribonucleótido Reductasas/metabolismo
6.
Mol Oncol ; 10(9): 1375-1386, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27511871

RESUMEN

Ribonucleotide Reductase (RNR) is the sole enzyme that catalyzes the reduction of ribonucleotides into deoxyribonucleotides. Even though RNR is a recognized target for antiproliferative molecules, and the main target of the approved drug hydroxyurea, few new leads targeted to this enzyme have been developed. We have evaluated a recently identified set of RNR inhibitors with respect to inhibition of the human enzyme and cellular toxicity. One compound, NSC73735, is particularly interesting; it is specific for leukemia cells and is the first identified compound that hinders oligomerization of the mammalian large RNR subunit. Similar to hydroxyurea, it caused a disruption of the cell cycle distribution of cultured HL-60 cells. In contrast to hydroxyurea, the disruption was reversible, indicating higher specificity. NSC73735 thus defines a potential lead candidate for RNR-targeted anticancer drugs, as well as a chemical probe with better selectivity for RNR inhibition than hydroxyurea.


Asunto(s)
Desoxirribonucleósidos/farmacología , Inhibidores Enzimáticos/farmacología , Ribonucleótido Reductasas/antagonistas & inhibidores , Bioensayo , Ciclo Celular/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/química , Citometría de Flujo , Regulación de la Expresión Génica/efectos de los fármacos , Células HL-60 , Humanos , Hidroxiurea/farmacología , Estructura Cuaternaria de Proteína , Subunidades de Proteína/antagonistas & inhibidores , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Ribonucleótido Reductasas/química , Ribonucleótido Reductasas/metabolismo , Temperatura
8.
Virus Res ; 223: 20-7, 2016 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-27329665

RESUMEN

Nora virus is an enteric virus that causes persistent, non-pathological infection in Drosophila melanogaster. It replicates in the fly gut and is transmitted via the fecal-oral route. Nora virus has a single-stranded positive-sense RNA genome, which is translated in four open reading frames. Reading frame three encodes the VP3 protein, the structure and function of which we have investigated in this work. We have shown that VP3 is a trimer that has an α-helical secondary structure, with a functionally important coiled-coil domain. In order to identify the role of VP3 in the Nora virus life cycle, we constructed VP3-mutants using the cDNA clone of the virus. Our results show that VP3 does not have a role in the actual assembly of the virus particles, but virions that lack VP3 or harbor VP3 with a disrupted coiled coil domain are incapable of transmission via the fecal-oral route. Removing the region downstream of the putative coiled coil appears to have an effect on the fitness of the virus but does not hamper its replication or transmission. We also found that the VP3 protein and particularly the coiled coil domain are crucial for the stability of Nora virus virions when exposed to heat or proteases. Hence, we propose that VP3 is imperative to Nora virus virions as it confers stability to the viral capsid.


Asunto(s)
Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Virus ARN/fisiología , Virión/fisiología , Secuencia de Aminoácidos , Proteínas de la Cápside/química , Expresión Génica , Mutación , Conformación Proteica en Hélice alfa , Dominios Proteicos , Multimerización de Proteína , Infecciones por Virus ARN/transmisión , Infecciones por Virus ARN/virología , Virión/aislamiento & purificación , Ensamble de Virus
9.
Structure ; 24(6): 906-17, 2016 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-27133024

RESUMEN

Ribonucleotide reductases (RNRs) reduce ribonucleotides to deoxyribonucleotides. Their overall activity is stimulated by ATP and downregulated by dATP via a genetically mobile ATP cone domain mediating the formation of oligomeric complexes with varying quaternary structures. The crystal structure and solution X-ray scattering data of a novel dATP-induced homotetramer of the Pseudomonas aeruginosa class I RNR reveal the structural bases for its unique properties, namely one ATP cone that binds two dATP molecules and a second one that is non-functional, binding no nucleotides. Mutations in the observed tetramer interface ablate oligomerization and dATP-induced inhibition but not the ability to bind dATP. Sequence analysis shows that the novel type of ATP cone may be widespread in RNRs. The present study supports a scenario in which diverse mechanisms for allosteric activity regulation are gained and lost through acquisition and evolutionary erosion of different types of ATP cone.


Asunto(s)
Adenosina Trifosfato/metabolismo , Pseudomonas aeruginosa/enzimología , Ribonucleótido Reductasas/química , Ribonucleótido Reductasas/metabolismo , Regulación Alostérica , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Modelos Moleculares , Mutación , Unión Proteica , Conformación Proteica , Pseudomonas aeruginosa/química , Pseudomonas aeruginosa/genética , Ribonucleótido Reductasas/genética
10.
Sci Rep ; 6: 21671, 2016 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-26902909

RESUMEN

Kluyveromyces lactis hAT-transposase 1 (Kat1) generates hairpin-capped DNA double strand breaks leading to MAT-switching (MATa to MATα). Using purified Kat1, we demonstrate the importance of terminal inverted repeats and subterminal repeats for its endonuclease activity. Kat1 promoted joining of the transposon end into a target DNA molecule in vitro, a biochemical feature that ties Kat1 to transposases. Gas-phase Electrophoretic Mobility Macromolecule analysis revealed that Kat1 can form hexamers when complexed with DNA. Kat1 point mutants were generated in conserved positions to explore structure-function relationships. Mutants of predicted catalytic residues abolished both DNA cleavage and strand-transfer. Interestingly, W576A predicted to be impaired for hairpin formation, was active for DNA cleavage and supported wild type levels of mating-type switching. In contrast, the conserved CXXH motif was critical for hairpin formation because Kat1 C402A/H405A completely blocked hairpinning and switching, but still generated nicks in the DNA. Mutations in the BED zinc-finger domain (C130A/C133A) resulted in an unspecific nuclease activity, presumably due to nonspecific DNA interaction. Kat1 mutants that were defective for cleavage in vitro were also defective for mating-type switching. Collectively, this study reveals Kat1 sharing extensive biochemical similarities with cut and paste transposons despite being domesticated and evolutionary diverged from active transposons.


Asunto(s)
ADN de Hongos/genética , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica , Genes del Tipo Sexual de los Hongos , Kluyveromyces/genética , Transposasas/genética , Secuencias de Aminoácidos , Dominio Catalítico , Secuencia Conservada , Roturas del ADN de Doble Cadena , División del ADN , Elementos Transponibles de ADN , ADN de Hongos/metabolismo , Evolución Molecular , Proteínas Fúngicas/metabolismo , Secuencias Invertidas Repetidas , Kluyveromyces/enzimología , Mutación Puntual , Multimerización de Proteína , Alineación de Secuencia , Relación Estructura-Actividad , Transposasas/metabolismo
11.
J Biol Chem ; 290(28): 17339-48, 2015 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-25971975

RESUMEN

Ribonucleotide reductase (RNR) catalyzes the reduction of ribonucleotides to the corresponding deoxyribonucleotides, which are used as building blocks for DNA replication and repair. This process is tightly regulated via two allosteric sites, the specificity site (s-site) and the overall activity site (a-site). The a-site resides in an N-terminal ATP cone domain that binds dATP or ATP and functions as an on/off switch, whereas the composite s-site binds ATP, dATP, dTTP, or dGTP and determines which substrate to reduce. There are three classes of RNRs, and class I RNRs consist of different combinations of α and ß subunits. In eukaryotic and Escherichia coli class I RNRs, dATP inhibits enzyme activity through the formation of inactive α6 and α4ß4 complexes, respectively. Here we show that the Pseudomonas aeruginosa class I RNR has a duplicated ATP cone domain and represents a third mechanism of overall activity regulation. Each α polypeptide binds three dATP molecules, and the N-terminal ATP cone is critical for binding two of the dATPs because a truncated protein lacking this cone could only bind dATP to its s-site. ATP activates the enzyme solely by preventing dATP from binding. The dATP-induced inactive form is an α4 complex, which can interact with ß2 to form a non-productive α4ß2 complex. Other allosteric effectors induce a mixture of α2 and α4 forms, with the former being able to interact with ß2 to form active α2ß2 complexes. The unique features of the P. aeruginosa RNR are interesting both from evolutionary and drug discovery perspectives.


Asunto(s)
Proteínas Bacterianas/metabolismo , Pseudomonas aeruginosa/enzimología , Ribonucleótido Reductasas/metabolismo , Adenosina Trifosfato/metabolismo , Regulación Alostérica , Sitio Alostérico , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Nucleótidos de Desoxiadenina/metabolismo , Ensayo de Cambio de Movilidad Electroforética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Cinética , Datos de Secuencia Molecular , Estructura Cuaternaria de Proteína , Subunidades de Proteína , Pseudomonas aeruginosa/genética , Ribonucleótido Reductasas/química , Ribonucleótido Reductasas/genética , Eliminación de Secuencia
12.
Appl Microbiol Biotechnol ; 93(1): 319-29, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22124722

RESUMEN

High concentrations of chloride ions inhibit the growth of acidophilic microorganisms used in biomining, a problem particularly relevant to Western Australian and Chilean biomining operations. Despite this, little is known about the mechanisms acidophiles adopt in order to tolerate high chloride ion concentrations. This study aimed to investigate the impact of increasing concentrations of chloride ions on the population dynamics of a mixed culture during pyrite bioleaching and apply proteomics to elucidate how two species from this mixed culture alter their proteomes under chloride stress. A mixture consisting of well-known biomining microorganisms and an enrichment culture obtained from an acidic saline drain were tested for their ability to bioleach pyrite in the presence of 0, 3.5, 7, and 20 g L(-1) NaCl. Microorganisms from the enrichment culture were found to out-compete the known biomining microorganisms, independent of the chloride ion concentration. The proteomes of the Gram-positive acidophile Acidimicrobium ferrooxidans and the Gram-negative acidophile Acidithiobacillus caldus grown in the presence or absence of chloride ions were investigated. Analysis of differential expression showed that acidophilic microorganisms adopted several changes in their proteomes in the presence of chloride ions, suggesting the following strategies to combat the NaCl stress: adaptation of the cell membrane, the accumulation of amino acids possibly as a form of osmoprotectant, and the expression of a YceI family protein involved in acid and osmotic-related stress.


Asunto(s)
Bacterias/clasificación , Bacterias/efectos de los fármacos , Proteínas Bacterianas/análisis , Biota , Cloruros/toxicidad , Proteoma/análisis , Microbiología del Agua , Iones/toxicidad , Hierro/metabolismo , Sulfuros/metabolismo
13.
Proteomics ; 11(1): 52-63, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21182194

RESUMEN

Extremely acidophilic archaea from the genus Ferroplasma inhabit iron-rich biomining environments and are important constituents of naturally occurring microbial consortia that catalyze the production of acid mine drainage. A combined bioinformatic, transcript profiling, and proteomic approach was used to elucidate iron homeostasis mechanisms in "F. acidarmanus" Fer1 and F. acidiphilum Y(T) . Bioinformatic analysis of the "F. acidarmanus" Fer1 genome sequence revealed genes encoding proteins hypothesized to be involved in iron-dependent gene regulation and siderophore biosynthesis; the Fhu and NRAMP cation acquisition systems; iron storage proteins; and the SUF machinery for the biogenesis of Fe-S clusters. A subset of homologous genes was identified on the F. acidiphilum Y(T) chromosome by direct PCR probing. In both strains, some of the genes appeared to be regulated in a ferrous/ferric iron-dependent manner, as indicated by RT-PCR. A detailed gel-based proteomics analysis of responses to iron depletion showed that a putative isochorismatase, presumably involved in siderophore biosynthesis, and the SufBCD system were upregulated under iron-limiting conditions. No evidence was obtained for iron sparing response during iron limitation. This study constitutes the first detailed investigation of iron homeostasis in extremely acidophilic archaea.


Asunto(s)
Hierro/metabolismo , Proteómica/métodos , Thermoplasmales/metabolismo , Biología Computacional/métodos , Homeostasis/fisiología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA