Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biochem Biophys Res Commun ; 450(1): 634-40, 2014 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-24937447

RESUMEN

The RNase D-type 3'-5' exonuclease Rrp6p from Saccharomyces cerevisiae is a nuclear-specific cofactor of the RNA exosome and associates in vivo with Rrp47p (Lrp1p). Here, we show using biochemistry and small-angle X-ray scattering (SAXS) that Rrp6p and Rrp47p associate into a stable, heterodimeric complex with an elongated shape consistent with binding of Rrp47p to the nuclease domain and opposite of the HRDC domain of Rrp6p. Rrp47p reduces the exonucleolytic activity of Rrp6p on both single-stranded and structured RNA substrates without significantly altering the affinity towards RNA or the ability of Rrp6p to degrade RNA secondary structure.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/ultraestructura , Complejo Multienzimático de Ribonucleasas del Exosoma/metabolismo , Complejo Multienzimático de Ribonucleasas del Exosoma/ultraestructura , Proteínas Nucleares/metabolismo , Proteínas Nucleares/ultraestructura , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/ultraestructura , ARN/metabolismo , ARN/ultraestructura , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestructura , Secuencia de Aminoácidos , Sitios de Unión , Simulación por Computador , Proteínas de Unión al ADN/química , Complejo Multienzimático de Ribonucleasas del Exosoma/química , Modelos Químicos , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas Nucleares/química , Unión Proteica , Conformación Proteica , ARN/química , Proteínas de Unión al ARN/química , Proteínas de Saccharomyces cerevisiae/química , Dispersión del Ángulo Pequeño , Difracción de Rayos X
2.
Sensors (Basel) ; 13(5): 5937-44, 2013 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-23666126

RESUMEN

Temperature is of major importance in most branches of science and technology as well as in everyday life, and with the miniaturization of electronic devices and the increasing ability to make research into small-scale systems, a specific need for very small thermostats and thermometers has been created. Here we describe how DNA molecules can be used as nanoscale sensors to meet these requirements. We illustrate how the hybridization kinetics between bases in DNA molecules combined with conformational changes of the DNA backbone can be exploited in the construction of simple but versatile temperature switches and thermometers, which can be built into electronic systems. DNA based sensors are at the same time applicable as ion detectors to monitor the chemical environment of a specific system.


Asunto(s)
ADN/química , Conformación de Ácido Nucleico , Temperatura , Termómetros , Secuencia de Bases , Tampones (Química) , Colorantes , Fluorescencia , Iones , Datos de Secuencia Molecular , Desnaturalización de Ácido Nucleico/efectos de los fármacos , Cloruro de Sodio/farmacología
3.
RNA ; 15(5): 850-61, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19307292

RESUMEN

In eukaryotic organisms, initiation of mRNA turnover is controlled by progressive shortening of the poly-A tail, a process involving the mega-Dalton Ccr4-Not complex and its two associated 3'-5' exonucleases, Ccr4p and Pop2p (Caf1p). RNA degradation by the 3'-5' DEDDh exonuclease, Pop2p, is governed by the classical two metal ion mechanism traditionally assumed to be dependent on Mg(2+) ions bound in the active site. Here, we show biochemically and structurally that fission yeast (Schizosaccharomyces pombe) Pop2p prefers Mn(2+) and Zn(2+) over Mg(2+) at the concentrations of the ions found inside cells and that the identity of the ions in the active site affects the activity of the enzyme. Ion replacement experiments further suggest that mRNA deadenylation could be subtly regulated by local Zn(2+) levels in the cell. Finally, we use site-directed mutagenesis to propose a mechanistic model for the basis of the preference for poly-A sequences exhibited by the Pop2p-type deadenylases as well as their distributive enzymatic behavior.


Asunto(s)
Manganeso/metabolismo , Ribonucleasas/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Zinc/metabolismo , Secuencia de Aminoácidos , Dominio Catalítico , Cristalografía por Rayos X , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Poli A/metabolismo , Ribonucleasas/química , Ribonucleasas/genética , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/genética , Alineación de Secuencia
4.
Nucleic Acids Res ; 36(19): 6165-74, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18824478

RESUMEN

Although centromere function has been conserved through evolution, apparently no interspecies consensus DNA sequence exists. Instead, centromere DNA may be interconnected through the formation of certain DNA structures creating topological binding sites for centromeric proteins. DNA topoisomerase II is a protein, which is located at centromeres, and enzymatic topoisomerase II activity correlates with centromere activity in human cells. It is therefore possible that topoisomerase II recognizes and interacts with the alpha satellite DNA of human centromeres through an interaction with potential DNA structures formed solely at active centromeres. In the present study, human topoisomerase IIalpha-mediated cleavage at centromeric DNA sequences was examined in vitro. The investigation has revealed that the enzyme recognizes and cleaves a specific hairpin structure formed by alpha satellite DNA. The topoisomerase introduces a single-stranded break at the hairpin loop in a reaction, where DNA ligation is partly uncoupled from the cleavage reaction. A mutational analysis has revealed, which features of the hairpin are required for topoisomerease IIalpha-mediated cleavage. Based on this a model is discussed, where topoisomerase II interacts with two hairpins as a mediator of centromere cohesion.


Asunto(s)
Antígenos de Neoplasias/metabolismo , Centrómero/química , ADN-Topoisomerasas de Tipo II/metabolismo , ADN Satélite/química , Proteínas de Unión al ADN/metabolismo , Secuencia de Bases , ADN Satélite/metabolismo , Proteínas de Unión al ADN/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Humanos , Modelos Biológicos , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Tenipósido/farmacología , Inhibidores de Topoisomerasa II
5.
Nucleic Acids Res ; 35(9): 3153-64, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17452359

RESUMEN

Deadenylation is the first and probably also rate-limiting step of controlled mRNA decay in eukaryotes and therefore central for the overall rate of gene expression. In yeast, the process is maintained by the mega-Dalton Ccr4-Not complex, of which both the Ccr4p and Pop2p subunits are 3'-5' exonucleases potentially responsible for the deadenylation reaction. Here, we present the crystal structure of the Pop2p subunit from Schizosaccharomyces pombe determined to 1.4 A resolution and show that the enzyme is a competent ribonuclease with a tunable specificity towards poly-A. In contrast to S. cerevisiae Pop2p, the S. pombe enzyme contains a fully conserved DEDDh active site, and the high resolution allows for a detailed analysis of its configuration, including divalent metal ion binding. Functional data further indicates that the identity of the ions in the active site can modulate both activity and specificity of the enzyme, and finally structural superposition of single nucleotides and poly-A oligonucleotides provide insight into the catalytic cycle of the protein.


Asunto(s)
Exorribonucleasas/química , Modelos Moleculares , Ribonucleasas/química , Proteínas de Schizosaccharomyces pombe/química , Secuencia de Aminoácidos , Sitios de Unión , Cristalografía por Rayos X , Exorribonucleasas/metabolismo , Metales/química , Datos de Secuencia Molecular , Poli A/metabolismo , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , ARN/química , ARN/metabolismo , Ribonucleasas/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Homología Estructural de Proteína , Especificidad por Sustrato
6.
Proc Natl Acad Sci U S A ; 103(32): 11898-903, 2006 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-16882719

RESUMEN

The multisubunit eukaryotic exosome is an essential RNA processing and degradation machine. In its nuclear form, the exosome associates with the auxiliary factor Rrp6p, which participates in both RNA processing and degradation reactions. The crystal structure of Saccharomyces cerevisiae Rrp6p displays a conserved RNase D core with a flanking HRDC (helicase and RNase D C-terminal) domain in an unusual conformation shown to be important for the processing function of the enzyme. Complexes with AMP and UMP, the products of the RNA degradation process, reveal how the protein specifically recognizes ribonucleotides and their bases. Finally, in vivo mutational studies show the importance of the domain contacts for the processing function of Rrp6p and highlight fundamental differences between the protein and its prokaryotic RNase D counterparts.


Asunto(s)
Exorribonucleasas/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Análisis Mutacional de ADN , Exorribonucleasas/fisiología , Complejo Multienzimático de Ribonucleasas del Exosoma , Magnesio/química , Modelos Moleculares , Mutación , Unión Proteica , Estructura Terciaria de Proteína , ARN/química , Ribonucleasa III/química , Ribonucleótidos/química , Proteínas de Saccharomyces cerevisiae/fisiología , Zinc/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...