Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 142(34): 14710-14724, 2020 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-32786786

RESUMEN

Recently, our group reported that enone and ketone functional groups, upon photoexcitation, can direct site-selective sp3 C-H fluorination in terpenoid derivatives. How this transformation actually occurred remained mysterious, as a significant number of mechanistic possibilities came to mind. Herein, we report a comprehensive study describing the reaction mechanism through kinetic studies, isotope-labeling experiments, 19F NMR, electrochemical studies, synthetic probes, and computational experiments. To our surprise, the mechanism suggests intermolecular hydrogen atom transfer (HAT) chemistry is at play, rather than classical Norrish hydrogen atom abstraction as initially conceived. What is more, we discovered a unique role for photopromoters such as benzil and related compounds that necessitates their chemical transformation through fluorination in order to be effective. Our findings provide documentation of an unusual form of directed HAT and are of crucial importance for defining the necessary parameters for the development of future methods.

2.
PLoS One ; 13(7): e0199389, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29975734

RESUMEN

Sighted people predominantly use vision to navigate spaces, and sight loss has negative consequences for independent navigation and mobility. The recent proliferation of devices that can extract 3D spatial information from visual scenes opens up the possibility of using such mobility-relevant information to assist blind and visually impaired people by presenting this information through modalities other than vision. In this work, we present two new methods for encoding visual scenes using spatial audio: simulated echolocation and distance-dependent hum volume modulation. We implemented both methods in a virtual reality (VR) environment and tested them using a 3D motion-tracking device. This allowed participants to physically walk through virtual mobility scenarios, generating data on real locomotion behaviour. Blindfolded sighted participants completed two tasks: maze navigation and obstacle avoidance. Results were measured against a visual baseline in which participants performed the same two tasks without blindfolds. Task completion time, speed and number of collisions were used as indicators of successful navigation, with additional metrics exploring detailed dynamics of performance. In both tasks, participants were able to navigate using only audio information after minimal instruction. While participants were 65% slower using audio compared to the visual baseline, they reduced their audio navigation time by an average 21% over just 6 trials. Hum volume modulation proved over 20% faster than simulated echolocation in both mobility scenarios, and participants also showed the greatest improvement with this sonification method. Nevertheless, we do speculate that simulated echolocation remains worth exploring as it provides more spatial detail and could therefore be more useful in more complex environments. The fact that participants were intuitively able to successfully navigate space with two new visual-to-audio mappings for conveying spatial information motivates the further exploration of these and other mappings with the goal of assisting blind and visually impaired individuals with independent mobility.


Asunto(s)
Percepción Auditiva , Mapeo Encefálico , Audición , Realidad Virtual , Visión Ocular , Percepción Visual , Adulto , Femenino , Humanos , Masculino , Aprendizaje por Laberinto , Programas Informáticos , Percepción Espacial , Interfaz Usuario-Computador , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...