Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
PLoS Pathog ; 18(1): e1010200, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35025968

RESUMEN

The Epstein-Barr Virus (EBV) is involved in the etiology of multiple hematologic and epithelial human cancers. EBV+ tumors employ multiple immune escape mechanisms, including the recruitment of immunosuppressive regulatory T cells (Treg). Here, we show some EBV+ tumor cells express high levels of the chemokines CCL17 and CCL22 both in vitro and in vivo and that this expression mirrors the expression levels of expression of the EBV LMP1 gene in vitro. Patient samples from lymphoblastic (Hodgkin lymphoma) and epithelial (nasopharyngeal carcinoma; NPC) EBV+ tumors revealed CCL17 and CCL22 expression of both tumor cell-intrinsic and -extrinsic origin, depending on tumor type. NPCs grown as mouse xenografts likewise showed both mechanisms of chemokine production. Single cell RNA-sequencing revealed in vivo tumor cell-intrinsic CCL17 and CCL22 expression combined with expression from infiltrating classical resident and migratory dendritic cells in a CT26 colon cancer mouse tumor engineered to express LMP1. These data suggest that EBV-driven tumors employ dual mechanisms for CCL17 and CCL22 production. Importantly, both in vitro and in vivo Treg migration was effectively blocked by a novel, small molecule antagonist of CCR4, CCR4-351. Antagonism of the CCR4 receptor may thus be an effective means of activating the immune response against a wide spectrum of EBV+ tumors.


Asunto(s)
Quimiocina CCL17/inmunología , Quimiocina CCL22/inmunología , Infecciones por Virus de Epstein-Barr/inmunología , Neoplasias/inmunología , Neoplasias/virología , Linfocitos T Reguladores/inmunología , Animales , Infecciones por Virus de Epstein-Barr/complicaciones , Herpesvirus Humano 4 , Xenoinjertos , Enfermedad de Hodgkin/inmunología , Enfermedad de Hodgkin/virología , Humanos , Ratones , Carcinoma Nasofaríngeo/inmunología , Carcinoma Nasofaríngeo/virología , Neoplasias Nasofaríngeas/inmunología , Neoplasias Nasofaríngeas/virología
2.
Nat Commun ; 12(1): 6522, 2021 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-34764253

RESUMEN

Cellular heterogeneity is a major cause of treatment resistance in cancer. Despite recent advances in single-cell genomic and transcriptomic sequencing, it remains difficult to relate measured molecular profiles to the cellular activities underlying cancer. Here, we present an integrated experimental system that connects single cell gene expression to heterogeneous cancer cell growth, metastasis, and treatment response. Our system integrates single cell transcriptome profiling with DNA barcode based clonal tracking in patient-derived xenograft models. We show that leukemia cells exhibiting unique gene expression respond to different chemotherapies in distinct but consistent manners across multiple mice. In addition, we uncover a form of leukemia expansion that is spatially confined to the bone marrow of single anatomical sites and driven by cells with distinct gene expression. Our integrated experimental system can interrogate the molecular and cellular basis of the intratumoral heterogeneity underlying disease progression and treatment resistance.


Asunto(s)
Análisis de la Célula Individual/métodos , Transcriptoma/genética , Animales , Adhesión Celular/genética , Adhesión Celular/fisiología , Células Cultivadas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Código de Barras del ADN Taxonómico , Humanos , Ratones , Análisis de Secuencia de ARN
4.
J Immunother Cancer ; 8(2)2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33243932

RESUMEN

BACKGROUND: Checkpoint inhibitors (CPIs) such as anti-PD(L)-1 and anti-CTLA-4 antibodies have resulted in unprecedented rates of antitumor responses and extension of survival of patients with a variety of cancers. But some patients fail to respond or initially respond but later relapse as they develop resistance to immune therapy. One of the tumor-extrinsic mechanisms for resistance to immune therapy is the accumulation of regulatory T cells (Treg) in tumors. In preclinical and clinical studies, it has been suggested that tumor trafficking of Treg is mediated by CC chemokine receptor 4 (CCR4). Over 90% of human Treg express CCR4 and migrate toward CCL17 and CCL22, two major CCR4 ligands that are either high at baseline or upregulated in tumors on CPI treatment. Hence, CCR4 antagonism has the potential to be an effective antitumor treatment by reducing the accumulation of Treg into the tumor microenvironment (TME). METHODS: We developed in vitro and in vivo models to assess Treg migration and antitumor efficacy using a potent and selective CCR4 antagonist, CCR4-351. We used two separate tumor models, Pan02 and CT26 mouse tumors, that have high and low CCR4 ligand expression, respectively. Tumor growth inhibition as well as the frequency of tumor-infiltrating Treg and effector T cells was assessed following the treatment with CCR4 antagonist alone or in combination with CPI. RESULTS: Using a selective and highly potent, novel small molecule inhibitor of CCR4, we demonstrate that migration of CCR4+ Treg into the tumor drives tumor progression and resistance to CPI treatment. In tumor models with high baseline levels of CCR4 ligands, blockade of CCR4 reduced the number of Treg and enhanced antitumor immune activity. Notably, in tumor models with low baseline level of CCR4 ligands, treatment with immune CPIs resulted in significant increases of CCR4 ligands and Treg numbers. Inhibition of CCR4 reduced Treg frequency and potentiated the antitumor effects of CPIs. CONCLUSION: Taken together, we demonstrate that CCR4-dependent Treg recruitment into the tumor is an important tumor-extrinsic mechanism for immune resistance. Blockade of CCR4 led to reduced frequency of Treg and resulted in increased antitumor activity, supporting the clinical development of CCR4 inhibitors in combination with CPI for the treatment of cancer. STATEMENT OF SIGNIFICANCE: CPI upregulates CCL17 and CCL22 expression in tumors and increases Treg migration into the TME. Pharmacological antagonism of the CCR4 receptor effectively inhibits Treg recruitment and results in enhanced antitumor efficacy either as single agent in CCR4 ligandhigh tumors or in combination with CPIs in CCR4 ligandlow tumors.


Asunto(s)
Inmunoterapia/métodos , Neoplasias/inmunología , Neoplasias/terapia , Receptores CCR4/inmunología , Linfocitos T Reguladores/inmunología , Animales , Femenino , Humanos , Ratones , Ensayos Antitumor por Modelo de Xenoinjerto
5.
Nature ; 586(7830): 600-605, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33029006

RESUMEN

Every cell in the human body has a unique set of somatic mutations, but it remains difficult to comprehensively genotype an individual cell1. Here we describe ways to overcome this obstacle in the context of normal human skin, thus offering a glimpse into the genomic landscapes of individual melanocytes from human skin. As expected, sun-shielded melanocytes had fewer mutations than sun-exposed melanocytes. However, melanocytes from chronically sun-exposed skin (for example, the face) had a lower mutation burden than melanocytes from intermittently sun-exposed skin (for example, the back). Melanocytes located adjacent to a skin cancer had higher mutation burdens than melanocytes from donors without skin cancer, implying that the mutation burden of normal skin can be used to measure cumulative sun damage and risk of skin cancer. Moreover, melanocytes from healthy skin commonly contained pathogenic mutations, although these mutations tended to be weakly oncogenic, probably explaining why they did not give rise to discernible lesions. Phylogenetic analyses identified groups of related melanocytes, suggesting that melanocytes spread throughout skin as fields of clonally related cells that are invisible to the naked eye. Overall, our results uncover the genomic landscapes of individual melanocytes, providing key insights into the causes and origins of melanoma.


Asunto(s)
Genoma Humano/genética , Genómica , Salud , Melanocitos/citología , Melanoma/genética , Análisis de la Célula Individual , Piel/citología , Análisis Mutacional de ADN , Femenino , Genotipo , Humanos , Masculino , Melanocitos/metabolismo , Melanocitos/patología , Melanoma/patología , Mutación , Piel/patología , Flujo de Trabajo
6.
Cancer Cell ; 34(1): 56-68.e9, 2018 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-29990501

RESUMEN

Loss of the CDKN2A tumor suppressor is associated with melanoma metastasis, but the mechanisms connecting the phenomena are unknown. Using CRISPR-Cas9 to engineer a cellular model of melanoma initiation from primary human melanocytes, we discovered that a lineage-restricted transcription factor, BRN2, is downstream of CDKN2A and directly regulated by E2F1. In a cohort of melanocytic tumors that capture distinct progression stages, we observed that CDKN2A loss coincides with both the onset of invasive behavior and increased BRN2 expression. Loss of the CDKN2A protein product p16INK4A permitted metastatic dissemination of human melanoma lines in mice, a phenotype rescued by inhibition of BRN2. These results demonstrate a mechanism by which CDKN2A suppresses the initiation of melanoma invasion through inhibition of BRN2.


Asunto(s)
Movimiento Celular , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Proteínas de Homeodominio/genética , Pérdida de Heterocigocidad , Neoplasias Pulmonares/genética , Melanocitos/metabolismo , Melanoma/genética , Factores del Dominio POU/genética , Neoplasias Cutáneas/genética , Activación Transcripcional , Animales , Línea Celular Tumoral , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Factor de Transcripción E2F1/genética , Factor de Transcripción E2F1/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundario , Masculino , Melanocitos/patología , Melanoma/metabolismo , Melanoma/secundario , Ratones Endogámicos NOD , Invasividad Neoplásica , Factores del Dominio POU/metabolismo , Mutación Puntual , Proteínas Proto-Oncogénicas B-raf/genética , Transducción de Señal , Neoplasias Cutáneas/metabolismo , Neoplasias Cutáneas/patología
7.
Sci Rep ; 7(1): 11943, 2017 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-28931937

RESUMEN

Digital holographic cytometry (DHC) permits label-free visualization of adherent cells. Dozens of cellular features can be derived from segmentation of hologram-derived images. However, the accuracy of single cell classification by these features remains limited for most applications, and lack of standardization metrics has hindered independent experimental comparison and validation. Here we identify twenty-six DHC-derived features that provide biologically independent information across a variety of mammalian cell state transitions. When trained on these features, machine-learning algorithms achieve blind single cell classification with up to 95% accuracy. Using classification accuracy to guide platform optimization, we develop methods to standardize holograms for the purpose of kinetic single cell cytometry. Applying our approach to human melanoma cells treated with a panel of cancer therapeutics, we track dynamic changes in cellular behavior and cell state over time. We provide the methods and computational tools for optimizing DHC for kinetic single adherent cell classification.


Asunto(s)
Técnicas Citológicas/métodos , Holografía/métodos , Melanoma/patología , Análisis de la Célula Individual/métodos , Algoritmos , Línea Celular Tumoral , Humanos , Aprendizaje Automático
8.
Nat Commun ; 8(1): 644, 2017 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-28935960

RESUMEN

Deep penetrating nevus (DPN) is characterized by enlarged, pigmented melanocytes that extend through the dermis. DPN can be difficult to distinguish from melanoma but rarely displays aggressive biological behavior. Here, we identify a combination of mutations of the ß-catenin and mitogen-activated protein kinase pathways as characteristic of DPN. Mutations of the ß-catenin pathway change the phenotype of a common nevus with BRAF mutation into that of DPN, with increased pigmentation, cell volume and nuclear cyclin D1 levels. Our results suggest that constitutive ß-catenin pathway activation promotes tumorigenesis by overriding dependencies on the microenvironment that constrain proliferation of common nevi. In melanoma that arose from DPN we find additional oncogenic alterations. We identify DPN as an intermediate stage in the step-wise progression from nevus to melanoma. In summary, we delineate specific genetic alterations and their sequential order, information that can assist in the diagnostic classification and grading of these distinctive neoplasms.Deep penetrating nevi (DPN) are unusual melanocytic neoplasms with unknown genetic drivers. Here the authors show that majority of DPN harbor activating mutations in the ß-catenin and the MAP-kinase pathways; this characteristic can help in the classification and grading of these distinctive neoplasms.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Sistema de Señalización de MAP Quinasas/fisiología , Nevo Intradérmico/metabolismo , beta Catenina/metabolismo , ADN/genética , ADN/metabolismo , Humanos , Melanoma/genética , Melanoma/metabolismo , Mutación , Nevo Intradérmico/genética , beta Catenina/genética
9.
Blood Adv ; 1(20): 1635-1644, 2017 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-29296810

RESUMEN

EPHB4, an ephrin type B receptor, is implicated in the growth of several epithelial tumors and is a promising target in cancer therapy; however, little is known about its role in hematologic malignancies. In this article, we show that EPHB4 is highly expressed in ∼30% of acute myeloid leukemia (AML) samples. In an unbiased RNA interference screen of primary leukemia samples, we found that EPHB4 drives survival in a subset of AML cases. Knockdown of EPHB4 inhibits phosphatidylinositol 3-kinase/AKT signaling, and this is accompanied by a reduction in cell viability, which can be rescued by a constitutively active form of AKT. Finally, targeting EPHB4 with a highly specific monoclonal antibody (MAb131) is effective against AML in vitro and in vivo. EPHB4 is therefore a potential target in AML with high EPHB4 expression.

10.
Indian J Physiol Pharmacol ; 52(2): 178-82, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-19130862

RESUMEN

This study was undertaken to determine the healing of ulcers induced by indomethacin due to antioxidant role of fruit extract of Benincasa hispida (Ashgourd) on ulcers in rats. Malondialdehyde (MDA) in RBC and antral homogenate was determined to measure tissue oxidation. Superoxide dismutase (SOD) in RBC and antral homogenate, plasma and homogenate vitamin C were estimated as measures of antioxidant defense. On induction of gastric ulcer, there was significant increase in SOD in RBC and homogenate levels and vitamin C in plasma. There was an apparent decrease in ulcer index in animals treated with fruit extract. There was significant decrease in MDA with concomitant decrease in SOD and vitamin C levels in the treated rats when compared to those not treated with fruit extract. Benincasa hispida has been shown to contain certain active principles like terpenes, flavanoid C--glycosides and sterols which have antioxidant effects. These probably inhibit gastric mucosal injury by scavenging the free radicals and repress production of SOD and vitamin C in these rats.


Asunto(s)
Antiulcerosos/farmacología , Antioxidantes/farmacología , Cucurbitaceae , Estrés Oxidativo/efectos de los fármacos , Úlcera Gástrica/prevención & control , Estómago/efectos de los fármacos , Animales , Ácido Ascórbico/metabolismo , Modelos Animales de Enfermedad , Mucosa Gástrica/metabolismo , Indometacina , Masculino , Malondialdehído/metabolismo , Extractos Vegetales/farmacología , Ratas , Úlcera Gástrica/inducido químicamente , Úlcera Gástrica/metabolismo , Superóxido Dismutasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...