Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Future Med Chem ; 11(24): 3109-3124, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31838897

RESUMEN

Aim: To find alternative compounds against methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-susceptible S. aureus (MSSA), novel derivatives from dehydroabietic acid were synthesized. Methods & results: Compound 12 was the most effective against 15 MRSA and 11 MSSA with minimum inhibitory concentration values ranging from 3.9 to 15.6 µg/ml. Although less active than 12, compound 11, followed by 25 and 13, also exhibited anti-staphylococcal activity. Additional studies showed that compound 12 is devoid of toxic effect on non-target cells. A structure-activity relationship study revealed that an oxime at C-13 together with a hydroxyl at C-12 could play a key role in the activity. Conclusion: These structures, in particular compound 12, could arise as templates for the development of agents against MRSA and MSSA.


Asunto(s)
Abietanos/síntesis química , Antibacterianos/síntesis química , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Abietanos/química , Abietanos/farmacología , Abietanos/toxicidad , Antibacterianos/química , Antibacterianos/farmacología , Antibacterianos/toxicidad , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Aberraciones Cromosómicas/inducido químicamente , Eritrocitos/efectos de los fármacos , Hemólisis/efectos de los fármacos , Humanos , Leucocitos Mononucleares/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Cebollas/efectos de los fármacos , Cebollas/genética , Relación Estructura-Actividad
2.
J Ethnopharmacol ; 239: 111930, 2019 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-31059749

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The mostly native species from Argentina are used in traditional medicine generally for the treatment of pain and inflammation, respiratory, gastro-intestinal and urinary disorders and as antiseptics. AIM OF THE STUDY: Since these ailments may be associated with bacterial infections and that it is necessary to discover alternative compounds with antibacterial activity, 69 extracts from these plants were screened for their activity against pathogenic bacteria. The most effective extract was then submitted to bioguided isolation to obtain the compounds responsible for this activity. MATERIALS AND METHODS: Extracts and fractions were screened using agar dilution, and compounds using microbroth dilution methods. A large panel of pathogenic bacteria was used, especially methicillin-susceptible Staphylococcus aureus (MSSA) and methicillin-resistant S. aureus (MRSA). Bioguided fractionation was performed using successive chromatographic techniques, while the chemical structures of the isolated compounds were determined by nuclear magnetic resonance (NMR). Additionally, a series of derivatives of the most active compound were prepared in order to study the chemical features required for achieving the antibacterial effect. RESULTS: Lepechinia meyenii (Walp.) Epling (Lamiaceae) extract showed itself the most effective, with minimum inhibitory concentration (MIC) against Gram positive and negative bacteria ranging from 62.5 to 500 µg/mL, and showing better activity on MRSA than on MSSA. Activity-guided fractionation yielded the abietanes carnosol (1), rosmanol (2) and carnosic acid (3) as active principles, with MICs ranging from 15.6-31.2, 15.6-62.5 and 7.8-15.6 µg/mL, respectively against 15 MRSA strains, and 15.6-31.2, 31.2-62.5 and 7.8-15.6 µg/mL, respectively against 11 MSSA strains, maintaining higher activity against the resistant bacteria, as does the extract. In addition, Enterococcus faecalis was sensitive to 1-3 with MICs of 15.6-62.5 µg/mL. The structure activity analysis showed that 12-OH is necessary for remarkable activity, but methylation in C-20 significantly increased this, as observed with 20-methyl carnosate (5) displaying the greatest effect, even more so than 3, with MICs of 3.9 µg/mL against all the tested MRSA and 3.9-7.8 µg/mL against the MSSA. CONCLUSIONS: The results of this study contribute to validate the traditional antibacterial use of species native to Argentina, particularly of L. meyenii. The chemical structures of the compounds obtained may aid the design of antibacterial agents, especially those effective against MRSA.


Asunto(s)
Antibacterianos/farmacología , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Lamiaceae , Extractos Vegetales/farmacología , Argentina , Bacterias Gramnegativas/crecimiento & desarrollo , Bacterias Grampositivas/crecimiento & desarrollo , Pruebas de Sensibilidad Microbiana , Plantas Medicinales
3.
Food Chem Toxicol ; 125: 383-391, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30684603

RESUMEN

To contribute enzymatic browning inhibitors to the food industry and also extend knowledge about the phytochemical profile of the anti-tyrosinase plant Lepechinia meyenii, its ethanol extract was subjected to bioguided fractionation. Three hydroxycinnamic acids, p-coumaric acid (1), caffeic acid (2) and rosmarinic acid (3), were isolated as mainly responsible for its activity. Compounds 1, 2 and 3 showed themselves highly effective for inhibiting tyrosinase with IC50 values of 0.30, 1.50 and 4.14 µM, respectively, for monophenolase activity and 0.62, 2.30 and 8.59 µM, respectively for diphenolase activity. This is the first report describing the isolation of the compounds causing the tyrosinase inhibitory activity of L. meyenii extract. The inhibitory kinetics of 1-3 using both L-tyrosine and L-DOPA as substrates was investigated and the results obtained were discussed at molecular level by docking analysis. The resulting compounds 1-3 and a phenolic-enriched fraction of the extract, 2.9-fold more active than the starting material, may be suitable as non-toxic and inexpensive alternatives for the control of deleterious enzymatic darkening.


Asunto(s)
Ácidos Cumáricos/química , Inhibidores Enzimáticos/química , Lamiaceae/química , Monofenol Monooxigenasa/antagonistas & inhibidores , Agaricales/enzimología , Dominio Catalítico , Ácidos Cumáricos/aislamiento & purificación , Ácidos Cumáricos/toxicidad , Pruebas de Enzimas , Inhibidores Enzimáticos/aislamiento & purificación , Inhibidores Enzimáticos/toxicidad , Humanos , Cinética , Simulación del Acoplamiento Molecular , Monofenol Monooxigenasa/química
4.
Artículo en Inglés | MEDLINE | ID: mdl-29861776

RESUMEN

Plants are a significant reservoir of cytotoxic agents, including compounds with the ability to interfere with multidrug-resistant (MDR) cells. With the aim of finding promising candidates for chemotherapy, 91 native and naturalized plants collected from the central region of Argentina were screened for their cytotoxic effect toward sensitive and MDR P-glycoprotein (P-gp) overexpressing human leukemia cells by means of MTT assays. The ethanol extracts obtained from Aldama tucumanensis, Ambrosia elatior, Baccharis artemisioides, Baccharis coridifolia, Dimerostemma aspilioides, Gaillardia megapotamica, and Vernonanthura nudiflora presented outstanding antiproliferative activity at 50 µg/mL, with inhibitory values from 93 to 100%, when tested on the acute lymphoblastic leukemia (ALL) cell line CCRF-CEM and the resistant derivative CEM-ADR5000, while 70-90% inhibition was observed against the chronic myelogenous leukemia (CML) cell K562 and its corresponding resistant subline, Lucena 1. Subsequent investigation showed these extracts to possess marked cytotoxicity with IC50 values ranging from 0.37 to 29.44 µg/mL, with most of them being below 7 µg/mL and with ALL cells, including the drug-resistant phenotype, being the most affected. G. megapotamica extract found to be one of the most effective and bioguided fractionation yielded helenalin (1). The sesquiterpene lactone displayed IC50 values of 0.63, 0.19, 0.74, and 0.16 µg/mL against K562, CCRF-CEM, Lucena 1, and CEM/ADR5000, respectively. These results support the potential of these extracts as a source of compounds for treating sensitive and multidrug-resistant leukemia cells and support compound 1 as a lead for developing effective anticancer agents.

5.
Food Chem Toxicol ; 109(Pt 2): 888-897, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28465189

RESUMEN

This work examines the antitumor activity of an isomeric mixture (1), composed of the limonoids meliartenin and its interchangeable isomer 12-hydroxyamoorastatin. The results obtained showed that 1 displayed outstanding cytotoxic activity against CCRF-CEM, K562, A549 and HCT116 cells, with a highly selective effect on the latter, with an IC50 value of 0.2 µM. Based on this finding, HCT116 cells were selected to study the mechanism of action of 1. Cell cycle analysis revealed that 1 induced sustained arrest in the S-phase, which was followed by the triggering of apoptotic cell death and reduced clonogenic capacity. This cytotoxicity was seen to be preceded by the upregulation of the tumor suppressor p53 and its target effector p21. In addition, it was found that p53 expression was required for efficient cell death induction, and thus that the toxicity of 1 relies mainly on p53-dependent mechanisms. Taken together, these findings position 1 as a potent antitumor agent, with potential for the development of novel chemotherapeutic drugs based on the induction of S-phase arrest.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Apoptosis/efectos de los fármacos , Neoplasias del Colon/metabolismo , Neoplasias del Colon/fisiopatología , Limoninas/farmacología , Melia azedarach/química , Extractos Vegetales/farmacología , Proteína p53 Supresora de Tumor/metabolismo , Antineoplásicos Fitogénicos/química , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/genética , Células HCT116 , Humanos , Limoninas/química , Extractos Vegetales/química , Proteína p53 Supresora de Tumor/genética
6.
Planta Med ; 81(15): 1382-91, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26291655

RESUMEN

The enzyme 4-hydroxyphenylpyruvate dioxygenase catalyzes the second step in the tyrosine degradation pathway. In mammals, this enzyme is the molecular target of drugs used for the treatment of metabolic disorders associated with defects in the tyrosine catabolism, mainly the fatal hereditary disease tyrosinemia type 1. This study evaluated the inhibitory effect of 91 extracts on 4-hydroxyphenylpyruvate dioxygenase from mostly native plants from central Argentina. Flourensia oolepis ethanol extract showed itself to be the most effective, and bioguided fractionation yielded pinocembrin (1) as its active principle. This flavanone, with an IC50 value of 73.1 µM and a KI of 13.7 µM, behaved as a reversible inhibitor of the enzyme and as a noncompetitive inhibitor. Molecular modeling studies confirmed the inhibitory potency of 1 and explained its activity by means of in silico determination of its binding mode in comparison to inhibitors of known activity, cocrystallized with 4-hydroxyphenylpyruvate dioxygenase. The main structural determinants that confer its potency are discussed. Analysis of the binding mode of the flavanone 1 with 4-hydroxyphenylpyruvate dioxygenase revealed the basis of the noncompetitive reversible mechanism of inhibition at the molecular level, which seems to be a common feature in this ubiquitous family of natural compounds. The resulting information may establish the basis for obtaining novel 4-hydroxyphenylpyruvate dioxygenase inhibitors for the treatment of tyrosinemia type 1 and other disorders associated with tyrosinase catabolism.


Asunto(s)
4-Hidroxifenilpiruvato Dioxigenasa/antagonistas & inhibidores , Asteraceae/química , Inhibidores Enzimáticos/farmacología , Flavanonas/farmacología , Animales , Argentina , Inhibidores Enzimáticos/aislamiento & purificación , Flavanonas/química , Flavanonas/aislamiento & purificación , Modelos Moleculares , Estructura Molecular , Porcinos
7.
Artículo en Inglés | MEDLINE | ID: mdl-26819623

RESUMEN

The antibacterial and cytotoxic effects of metabolites isolated from an antibacterial extract of Flourensia oolepis were evaluated. Bioguided fractionation led to five flavonoids, identified as 2',4'-dihydroxychalcone (1), isoliquiritigenin (2), pinocembrin (3), 7-hydroxyflavanone (4), and 7,4'-dihydroxy-3'-methoxyflavanone (5). Compound 1 showed the highest antibacterial effect, with minimum inhibitory concentration (MIC) values ranging from 31 to 62 and 62 to 250 µg/mL, against Gram-positive and Gram-negative bacteria, respectively. On further assays, the cytotoxic effect of compounds 1-5 was determined by MTT assay on acute lymphoblastic leukemia (ALL) and chronic myeloid leukemia (CML) cell lines including their multidrug resistant (MDR) phenotypes. Compound 1 induced a remarkable cytotoxic activity toward ALL cells (IC50 = 6.6-9.9 µM) and a lower effect against CML cells (IC50 = 27.5-30.0 µM). Flow cytometry was used to analyze cell cycle distribution and cell death by PI-labeled cells and by Annexin V/PI staining, respectively. Upon treatment, 1 induced cell cycle arrest in the G2/M phase accompanied by a strong induction of apoptosis. These results describe for the first time the antibacterial metabolites of F. oolepis extract, with 1 being the most effective. This chalcone also emerges as a selective cytotoxic agent against sensitive and resistant leukemic cells, highlighting its potential as a lead compound.

8.
Phytomedicine ; 20(3-4): 258-61, 2013 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-23207251

RESUMEN

As part of our ongoing research on the antibacterial activity of Achyrocline satureioides, this study seeks to better understand the interactions between the metabolites isolated from this plant. For this purpose, the combined effect of 23-methyl-6-O-desmethylauricepyrone (1), quercetin (2) and 3-O-methylquercetin (3), obtained through bioguided fractionation from A. satureioides ethanol extract, was evaluated against Staphylococcus aureus and Escherichia coli. In first place, the antibacterial effect of the combination of flavonols 2 and 3 was assessed, as these showed individual effectiveness lower than or equal to that of the fraction from which they were obtained. When the flavonols were applied together at concentrations below their minimum inhibitory concentration (MIC) values, a synergistic effect (FICI<0.30) against S. aureus was observed. In addition, compounds 2 and 3 in combination reduced 1000 times the MIC of compound 1, showing a clear synergistic interaction (FICI<0.15) in treatments against the Gram (+) bacterium. The most active combination against E. coli showed an additive interaction (FICI<0.62) between the three assayed compounds 1-3. These results indicated the existence of concerted action between these metabolites, evidence of the importance of the synergistic interactions between the components of plant-derived extracts for the control of pathogenic bacteria.


Asunto(s)
Achyrocline/química , Antibacterianos/aislamiento & purificación , Interacciones Farmacológicas , Escherichia coli/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Fitoterapia , Plantas Medicinales/química , Staphylococcus aureus/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...