Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(11)2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38891937

RESUMEN

Modular supramolecular complexes, where different proteins are assembled to gather targeting capability and photofunctional properties within the same structures, are of special interest for bacterial photodynamic inactivation, given their inherent biocompatibility and flexibility. We have recently proposed one such structure, exploiting the tetrameric bacterial protein streptavidin as the main building block, to target S. aureus protein A. To expand the palette of targets, we have linked biotinylated Concanavalin A, a sugar-binding protein, to a methylene blue-labelled streptavidin. By applying a combination of spectroscopy and microscopy, we demonstrate the binding of Concanavalin A to the walls of Gram-positive S. aureus and Gram-negative E. coli. Photoinactivation is observed for both bacterial strains in the low micromolar range, although the moderate affinity for the molecular targets and the low singlet oxygen yields limit the overall efficiency. Finally, we apply a maximum entropy method to the analysis of autocorrelation traces, which proves particularly useful when interpreting signals measured for diffusing systems heterogeneous in size, such as fluorescent species bound to bacteria.


Asunto(s)
Pared Celular , Concanavalina A , Escherichia coli , Staphylococcus aureus , Concanavalina A/química , Concanavalina A/metabolismo , Escherichia coli/metabolismo , Staphylococcus aureus/metabolismo , Pared Celular/metabolismo , Estreptavidina/química , Estreptavidina/metabolismo , Proteínas Bacterianas/metabolismo , Unión Proteica
2.
Chem Sci ; 14(26): 7170-7184, 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37416722

RESUMEN

Photodynamic therapy (PDT) represents a promising approach for cancer treatment. However, the oxygen dependency of PDT to generate reactive oxygen species (ROS) hampers its therapeutic efficacy, especially against hypoxic solid tumors. In addition, some photosensitizers (PSs) have dark toxicity and are only activatable with short wavelengths such as blue or UV-light, which suffer from poor tissue penetration. Herein, we developed a novel hypoxia-active PS with operability in the near-infrared (NIR) region based on the conjugation of a cyclometalated Ru(ii) polypyridyl complex of the type [Ru(C^N)(N^N)2] to a NIR-emitting COUPY dye. The novel Ru(ii)-coumarin conjugate exhibits water-solubility, dark stability in biological media and high photostability along with advantageous luminescent properties that facilitate both bioimaging and phototherapy. Spectroscopic and photobiological studies revealed that this conjugate efficiently generates singlet oxygen and superoxide radical anions, thereby achieving high photoactivity toward cancer cells upon highly-penetrating 740 nm light irradiation even under hypoxic environments (2% O2). The induction of ROS-mediated cancer cell death upon low-energy wavelength irradiation along with the low dark toxicity exerted by this Ru(ii)-coumarin conjugate could circumvent tissue penetration issues while alleviating the hypoxia limitation of PDT. As such, this strategy could pave the way to the development of novel NIR- and hypoxia-active Ru(ii)-based theragnostic PSs fuelled by the conjugation of tunable, low molecular-weight COUPY fluorophores.

3.
J Med Chem ; 66(12): 7849-7867, 2023 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-37265008

RESUMEN

Photodynamic therapy holds great promise as a non-invasive anticancer tool against drug-resistant cancers. However, highly effective, non-toxic, and reliable photosensitizers with operability under hypoxic conditions remain to be developed. Herein, we took the advantageous properties of COUPY fluorophores and cyclometalated Ir(III) complexes to develop novel PDT agents based on Ir(III)-COUPY conjugates with the aim of exploring structure-activity relationships. The structural modifications carried out within the coumarin scaffold had a strong impact on the photophysical properties and cellular uptake of the conjugates. All Ir(III)-COUPY conjugates exhibited high phototoxicity under green light irradiation, which was attributed to the photogeneration of ROS, while remaining non-toxic in the dark. Among them, two hit conjugates showed excellent phototherapeutic indexes in cisplatin-resistant A2780cis cancer cells, both in normoxia and in hypoxia, suggesting that photoactive therapy approaches based on the conjugation of far-red/NIR-emitting COUPY dyes and transition metal complexes could effectively tackle in vitro acquired resistance to cisplatin.


Asunto(s)
Antineoplásicos , Fotoquimioterapia , Humanos , Cisplatino , Antineoplásicos/farmacología , Antineoplásicos/química , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Fármacos Fotosensibilizantes/química , Relación Estructura-Actividad
4.
J Am Chem Soc ; 144(33): 15059-15071, 2022 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-35952371

RESUMEN

Photopharmacology is an emerging approach in drug design and pharmacological therapy. Light is used to switch a pharmacophore between a biologically inactive and an active isomer with high spatiotemporal resolution at the site of illness, thus potentially avoiding side effects in neighboring healthy tissue. The most frequently used strategy to design a photoswitchable drug is to replace a suitable functional group in a known bioactive molecule with azobenzene. Our strategy is different in that the photoswitch moiety is closer to the drug's scaffold. Docking studies reveal a very high structural similarity of natural 17ß-estradiol and the E isomers of dihydroxy diazocines, but not their Z isomers, respectively. Seven dihydroxy diazocines were synthesized and subjected to a biological estrogen reporter gene assay. Four derivatives exhibit distinct estrogenic activity after irradiation with violet light, which can be shut off with green light. Most remarkably, the photogenerated, active E form of one of the active compounds isomerizes back to the inactive Z form with a half-life of merely several milliseconds in water, but nevertheless is active for more than 3 h in the presence of the estrogen receptor. The results suggest a significant local impact of the ligand-receptor complex toward back-isomerization. Thus, drugs that are active when bound but lose their activity immediately after leaving the receptor could be of great pharmacological value because they strongly increase target specificity. Moreover, the drugs are released into the environment in their inactive form. The latter argument is particularly important for drugs that act as endocrine disruptors.


Asunto(s)
Diseño de Fármacos , Estrógenos , Estradiol/farmacología , Isomerismo , Ligandos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA